
Acta Numerica (2000), pp. 133–213 c© Cambridge University Press, 2000

Triangulations and meshes in
computational geometry

Herbert Edelsbrunner∗

Department of Computer Science,

Duke University, Durham, NC 27708

and

Raindrop Geomagic, Research Triangle Park,

North Carolina, NC 27709, USA

The Delaunay triangulation of a finite point set is a central theme in compu-
tational geometry. It finds its major application in the generation of meshes
used in the simulation of physical processes. This paper connects the pre-
dominantly combinatorial work in classical computational geometry with the
numerical interest in mesh generation. It focuses on the two- and three-
dimensional case and covers results obtained during the twentieth century.

∗ Research is partially supported by the Army Research Office under grant DAAG55-
98-1-0177 and by the National Science Foundation under grants CCR-96-19542 and
CCR-97-12088.

134 H. Edelsbrunner

CONTENTS

1 Introduction 134
2 Voronoi and Delaunay 136
3 Edge flipping 141
4 Randomized construction 146
5 Symbolic perturbation 151
6 Constrained triangulation 156
7 Delaunay refinement 161
8 Local feature size 165
9 Lifting and polarity 171
10 Weighted distance 177
11 Flipping 182
12 Incremental algorithm 185
13 Meshing polyhedra 189
14 Tetrahedral shape 194
15 Delaunay refinement 199
16 Sliver exudation 204
References 210

1. Introduction

This is a paper about computational geometry and its connection to science
and engineering. We argue that computational geometry draws its motiva-
tion from applications to various areas including mesh generation and that
it can maintain its livelihood only if it fulfils the promise of advancing these
applications in a significant manner.

History

The beginning of computational geometry as an independent intellectual
discipline is usually dated around 1975, when Michael Shamos and Dan Hoey
proposed algorithmic solutions for a host of basic geometric tasks (Shamos
1975, Shamos and Hoey 1975, 1976). They defined computational geometry
as the study of the computational complexity of geometric problems. It is
important to notice the implicit but significant shift from a continuous to a
discrete conception of geometry. Application areas use geometry to model a
presumably continuous reality, while computational complexity relates the
finite amount of time it takes to solve a problem with the finite size in
which the problem presents itself. Within a few years after its inception,
computational geometry developed a strong affinity to discrete geometry as
practised by combinatorialists (Erdős 1979, Pach and Agarwal 1995). This
affinity was natural and helped the field to mature to a point where it is
ready for a reorientation back to its continuous roots.

Triangulations and meshes in computational geometry 135

The intellectual development in computational geometry can be traced
fairly well through the series of proceedings documenting the annual Sym-
posium on Computational Geometry, first held in 1985. The breadth of
the field is evident from the textbooks, which all take different views and
explore different aspects of the field (de Berg, van Kreveld, Overmars and
Schwarzkopf 1997, Edelsbrunner 1987, Mulmuley 1994, Klein 1997, Okabe,
Boots and Sugihara 1992, O’Rourke 1987, 1994, Preparata and Shamos
1985). We also refer to a recent handbook, which organizes the combined
field of discrete and computational geometry in 52 chapters (Goodman and
O’Rourke 1997).

Outline

We illustrate the claimed function of computational geometry as a bridge
between continuous and discrete methods with a focus on geometric trian-
gulations and in particular Delaunay triangulations. Half the paper studies
combinatorial properties of and algorithms for Delaunay triangulations. The
other half explores questions that arise in the use of Delaunay triangulations
as a representation of pieces of continuous space. To emphasize the shift in
focus, we then refer to the triangulation as a mesh, which is the traditional
engineering term for space decompositions used in numerical analysis (Bern
and Eppstein 1992).

There is an orthogonal way of structuring this paper in two halves. Sec-
tions 2 to 8 deal with triangulations in the Euclidean plane, and Sections 9
to 16 study tetrahedrizations in three-dimensional Euclidean space.

In the predominantly discrete block consisting of Sections 2 to 5, we see a
progression from geometric/structural to algorithmic considerations, and we
see the same in the block consisting of Sections 9 to 12. The move towards
a continuous and numerical viewpoint is pursued in the block consisting of
Sections 6 to 8 and in the block consisting of Sections 13 to 16.

Style

The style of this paper is representative of the dominant style in compu-
tational geometry. Understanding is sought through formulating general
claims and proving them. Similarly, algorithms are described in detail
and the running time is analysed under worst-case and average assump-
tions. We make a conscious effort to concentrate on the two- and three-
dimensional cases and with a few exceptions avoid discussions of the general
d-dimensional case. While identifying properties that hold independent of
the particular dimension is generally commendable, it seems counterproduct-
ive in the study of meshes whose properties vary significantly with changing
dimension.

136 H. Edelsbrunner

Each section is designed as a lecture in a graduate course. Whenever there
is a choice, we prefer topics that have a general appeal over more specialized
ones, and topics that are easy to explain over more complicated ones. Each
section ends with bibliographic notes collecting references to the literature
and comments on important related developments.

2. Voronoi and Delaunay

This section introduces Delaunay triangulations as duals of Voronoi dia-
grams. It discusses the role of general position in the definition and explains
some of the basic properties of Delaunay triangulations.

Voronoi diagrams

Given a finite set of points in the plane, the idea is to assign to each point
a region of influence in such a way that the regions decompose the plane.
To describe a specific way to do that, let S ⊆ R

2 be a set of n points and
define the Voronoi region of p ∈ S as the set of points x ∈ R

2 that are at
least as close to p as to any other point in S, that is,

Vp = {x ∈ R
2 : ‖x− p‖ ≤ ‖x− q‖, ∀q ∈ S}.

This definition is illustrated in Figure 1. Consider the half-plane of points
at least as close to p as to q: Hpq = {x ∈ R

2 : ‖x− p‖ ≤ ‖x− q‖}. The
Voronoi region of p is the intersection of half-planes Hpq, for all q ∈ S−{p}.
It follows that Vp is a convex polygonal region, possibly unbounded, with at
most n− 1 edges.

Fig. 1. Seven points define the same number of
Voronoi regions. One of the regions is bounded

because the defining point is completely surrounded
by the others

Each point x ∈ R
2 has at least one nearest point in S, so it lies in at

least one Voronoi region. It follows that the Voronoi regions cover the entire
plane. Two Voronoi regions lie on opposite sides of the perpendicular bi-
sector separating the two generating points. It follows that Voronoi regions

Triangulations and meshes in computational geometry 137

do not share interior points, and if a point x belongs to two Voronoi re-
gions then it lies on the bisector of the two generators. The Voronoi regions
together with their shared edges and vertices form the Voronoi diagram of S.

Delaunay triangulation

We get a dual diagram if we draw a straight Delaunay edge connecting
points p, q ∈ S if and only if their Voronoi regions intersect along a common
line segment; see Figure 2. In general, the Delaunay edges decompose the
convex hull of S into triangular regions, which are referred to as Delaunay
triangles.

Fig. 2. The Voronoi edges are dotted and
the dual Delaunay edges are solid

To count the Delaunay edges we use some results on planar graphs defined
by the property that their edges can be drawn in the plane without crossing.
It is true that no two Delaunay edges cross each other, but to avoid an
argument, we draw each Delaunay edge from one endpoint straight to the
midpoint of the shared Voronoi edge and then straight to the other endpoint.
Now it is trivial that no two of these edges cross. Using Euler’s relation, it
can be shown that a planar graph with n ≥ 3 vertices has at most 3n − 6
edges and at most 2n − 4 faces. The same bounds hold for the number of
Delaunay edges and triangles. There is a bijection between the Voronoi edges
and the Delaunay edges, so 3n − 6 is also an upper bound on the number
of Voronoi edges. Similarly, 2n − 4 is an upper bound on the number of
Voronoi vertices.

Degeneracy

There is an ambiguity in the definition of Delaunay triangulation if four or
more Voronoi regions meet at a common point u. One such case is shown in
Figure 3. The points generating the four or more regions all have the same
distance from u: they lie on a common circle around u. Probabilistically,
the chance of picking even just four points on a circle is zero because the

138 H. Edelsbrunner

circle defined by the first three points has zero measure in R
2. A common

way to say the same thing is that four points on a common circle form a
degeneracy or a special case. An arbitrarily small perturbation suffices to
remove the degeneracy and to reduce the special to the general case.

Fig. 3. To the left, four dotted Voronoi edges meet at
a common vertex and the dual Delaunay edges bound
a quadrilateral. To the right, we have the general case,

where only three Voronoi edges meet at a common
vertex and the Delaunay edges bound a triangle

We will often assume general position, which is the absence of any degen-
eracy. This really means that we delay the treatment of degenerate cases
to later. The treatment is eventually done by perturbation, which can be
actual or conceptual, or by exhaustive case analysis.

Circles and power

For now we assume general position. For a Delaunay triangle, abc, consider
the circumcircle, which is the unique circle passing through a, b, and c. Its
centre is the corresponding Voronoi vertex, u = Va ∩ Vb ∩ Vc, and its radius
is % = ‖u− a‖ = ‖u− b‖ = ‖u− c‖; see Figure 3. We call the circle empty
because it encloses no point of S. It turns out that empty circles characterize
Delaunay triangles.

Circumcircle Claim. Let S ⊆ R
2 be finite and in general position, and

let a, b, c ∈ S be three points. Then abc is a Delaunay triangle if and only if
the circumcircle of abc is empty.

It is not entirely straightforward to see that this is true, at least not at the
moment. Instead of proving the Circumcircle Claim, we focus our attention
on a new concept of distance from a circle. The power of a point x ∈ R

2

from a circle U with centre u and radius % is

πU (x) = ‖x− u‖2 − %2.

If x lies outside the circle, then πU (x) is the square length of a tangent line
segment connecting x with U . In any case, the power is positive outside the

Triangulations and meshes in computational geometry 139

circle, zero on the circle, and negative inside the circle. We sometimes think
of a circle as a weighted point and of the power as a weighted distance to
that point. Given two circles, the set of points with equal power from both
is a line. Figure 4 illustrates three different arrangements of two circles and
their bisectors of points with equal power from both.

Fig. 4. Three times two circles with bisector.
From left to right: two disjoint and non-nested

circles, two intersecting circles, two nested circles

Acyclicity

We use the notion of power to prove an acyclicity result for Delaunay tri-
angles. Let x ∈ R

2 be an arbitrary but fixed viewpoint. We say a triangle
abc lies in front of another triangle def if there is a half-line starting at x
that first passes through abc and then through def ; see Figure 6. We write
abc ≺ def if abc lies in front of def . The set of Delaunay triangles together
with ≺ forms a relation. General relations have cycles, which are sequences
τ0 ≺ τ1 ≺ · · · ≺ τk ≺ τ0. Such cycles can also occur in general triangula-
tions, as illustrated in Figure 5, but they cannot occur if the triangles are
defined by empty circumcircles.

Fig. 5. From the viewpoint in the middle, the three
skinny triangles form a cycle in the in-front relation

Acyclicity Lemma. The in-front relation for the set of Delaunay triangles
defined by a finite set S ⊆ R

2 is acyclic.

Proof. We show that abc ≺ def implies that the power of x from the
circumcircle of abc is less than the power from the circumcircle of def . Define

140 H. Edelsbrunner

abc = τ0 and write π0(x) for the power of x from the circumcircle of abc.
Similarly define def = τk and πk(x). Because S is finite, we can choose a
half-line that starts at x, passes through abc and def , and contains no point
of S. It intersects a sequence of Delaunay triangles:

abc = τ0 ≺ τ1 ≺ · · · ≺ τk = def .

For any two consecutive triangles, the bisector of the two circumcircles con-
tains the common edge. Because the third point of τi+1 lies outside the
circumcircle of τi we have πi(x) < πi+1(x), for 0 ≤ i ≤ k − 1. Hence
π0(x) < πk(x). The acyclicity of the relation follows because real numbers
cannot increase along a cycle. 2

d
c

b

a

x

f

e

Fig. 6. Triangle abc lies in front of triangle def .
If abc and def belong to a Delaunay triangulation,
then there is a sequence of triangles between them

that all intersect the half-line

Bibliographic notes

Voronoi diagrams are named after the Russian mathematician Georges Voro-
noi, who published two seminal papers at the beginning of the twentieth
century (Voronoi 1907/08). The same concept was discussed about half a
century earlier by P. G. L. Dirichlet, and there are unpublished notes by
René Descartes suggesting that he was already using Voronoi diagrams in
the first half of the seventeenth century. Delaunay triangulations are named
after the Russian mathematician Boris Delaunay, who dedicated his pa-
per on empty spheres (Delaunay 1934) to Georges Voronoi. The article by
Franz Aurenhammer (1991) offers a nice survey of Voronoi diagrams and
their algorithmic applications. The acyclicity of Delaunay triangulations in
arbitrary dimensions was proved by Edelsbrunner (1990) and subsequently
applied in computer graphics. In particular, the three-dimensional case has
been exploited for the visualization of diffuse volumes (Max, Hanrahan and
Crawfis 1990, Williams 1992).

Triangulations and meshes in computational geometry 141

3. Edge flipping

This section introduces a local condition for edges, shows it implies a trian-
gulation is Delaunay, and derives an algorithm based on edge flipping. The
correctness of the algorithm implies that, among all triangulations of a given
point set, the Delaunay triangulation maximizes the smallest angle.

Empty circles

Recall the Circumcircle Claim, which says that three points a, b, c ∈ S are
vertices of a Delaunay triangle if and only if the circle that passes through
a, b, c is empty. A Delaunay edge, ab, belongs to one or two Delaunay
triangles. In either case, there is a pencil of empty circles passing through a
and b. The centres of these circles are the points on the Voronoi edge Va∩Vb;
see Figure 7. What the Circumcircle Claim is for triangles, the Supporting
Circle Claim is for edges.

b

a

Fig. 7. The Voronoi edge is the dashed line segment of
centres of circles passing through the endpoints of ab

Supporting Circle Claim. Let S ⊆ R
2 be finite and in general position

and a, b ∈ S. Then ab is a Delaunay edge if and only if there is an empty
circle that passes through a and b.

Delaunay lemma

By a triangulation we mean a collection of triangles together with their edges
and vertices. A triangulation K triangulates S if the triangles decompose
the convex hull of S and the set of vertices is S. An edge ab ∈ K is locally
Delaunay if

(i) it belongs to only one triangle and therefore bounds the convex hull of
S, or

(ii) it belongs to two triangles, abc and abd, and d lies outside the circum-
circle of abc.

142 H. Edelsbrunner

The definition is illustrated in Figure 8. A locally Delaunay edge is not
necessarily an edge of the Delaunay triangulation, and it is fairly easy to
construct such an example. However, if every edge is locally Delaunay then
we can show that all are Delaunay edges.

a a

d

d

cc

bb

Fig. 8. To the left ab is locally Delaunay
and to the right it is not

Delaunay Lemma. If every edge of K is locally Delaunay then K is the
Delaunay triangulation of S.

Proof. Consider a triangle abc ∈ K and a vertex p ∈ K different from a, b, c.
We show that p lies outside the circumcircle of abc. Because this is then true
for every p, the circumcircle of abc is empty, and because this is then true
for every triangle abc, K is the Delaunay triangulation of S. Choose a point
x inside abc such that the line segment from x to p contains no vertex other
than p. Let abc = τ0, τ1, . . . , τk be the sequence of triangles that intersect
xp, as in Figure 9. We write πi(p) for the power of p to the circumcircle
of τi, as before. Since the edges along xp are all locally Delaunay, we have
π0(p) > π1(p) > · · · > πk(p). Since p is one of the vertices of the last
triangle we have πk(p) = 0. Therefore π0(p) > 0, which is equivalent to p
lying outside the circumcircle of abc. 2

a
c

b

p

x

Fig. 9. Sequence of triangles in K that intersect xp

Edge-flip algorithm

If ab belongs to two triangles, abc and abd, whose union is a convex quad-
rangle, then we can flip ab to cd. Formally, this means we remove ab, abc, abd

Triangulations and meshes in computational geometry 143

from the triangulation and we add cd, acd, bcd to the triangulation, as in Fig-
ure 10. The picture of a flip looks like a tetrahedron with front and back
superimposed. We can use edge flips as elementary operations to convert an

b

a

c

d

α1α
2γ
1γ

2

1β

2δ

δ1

β2

Fig. 10. Flipping ab to cd. If ab is not locally
Delaunay then the union of the two triangles

is convex and cd is locally Delaunay

arbitrary triangulation K to the Delaunay triangulation. The algorithm uses
a stack and maintains the invariant that unless an edge is locally Delaunay,
it resides on the stack. To avoid duplicates, we mark edges stored on the
stack. Initially, all edges are marked and pushed on the stack.

while stack is non-empty do

pop ab from stack and unmark it;
if ab not locally Delaunay then

flip ab to cd;
for xy ∈ {ac, cb, bd, da} do

if xy not marked then

mark xy and push it on stack
endif

endfor

endif

endwhile.

Let n be the number of points. The amount of memory used by the algorithm
is O(n) because there are at most 3n − 6 edges, and the stack contains at
most one copy of each edge. At the time the algorithm terminates every edge
is locally Delaunay. By the Delaunay lemma, the triangulation is therefore
the Delaunay triangulation of the point set.

Circle and plane

Before proving the algorithm terminates, we interpret a flip as a tetrahedron
in three-dimensional space. Let â, b̂, ĉ, d̂ be the vertical projections of points

144 H. Edelsbrunner

a, b, c, d in the x1x2-plane onto the paraboloid defined as the graph of Π :
x3 = x2

1 + x2
2; see Figure 11.

a b

c

d

Fig. 11. Points a, b, c lie on the dashed circle in the
x1x2-plane and d lies inside that circle. The dotted
curve is the intersection of the paraboloid with the

plane that passes through â, b̂, ĉ. It is an ellipse
whose projection is the dashed circle

Lifted Circle Claim. Point d lies inside the circumcircle of abc if and
only if point d̂ lies vertically below the plane passing through â, b̂, ĉ.

Proof. Let U be the circumcircle of abc and H the plane passing through
â, b̂, ĉ. We first show that U is the vertical projection of H∩gf Π. Transform
the entire space by mapping every point (x1, x2, x3) to (x1, x2, x3−x2

1−x2
2).

Points â, b̂, ĉ, d̂ are mapped back to a, b, c, d and the paraboloid Π becomes
the x1x2-plane. The plane H becomes a paraboloid that passes through
a, b, c. It intersects the x1x2-plane in the circumcircle of abc. Plane H
partitions gf Π into a patch below H, a curve in H, and a patch above H.
The curve in H is projected onto the circumcircle of abc, and the patch
below H is projected onto the open disk inside the circle. It follows that d̂
belongs to the patch below H if and only if d lies inside the circumcircle of
abc. 2

Running time

Flipping ab to cd is like gluing the tetrahedron âb̂ĉd̂ from below to âb̂ĉ and
âb̂d̂. The algorithm can be understood as gluing a sequence of tetrahedra.
Once we glue âb̂ĉd̂ we cannot glue another tetrahedron right below âb̂. In
other words, once we flip ab we cannot introduce ab again by some other flip.
This implies there are at most as many flips as there are edges connecting n
points, namely

(
n
2

)
. Each flip takes constant time, hence the total running

time is O(n2).
There are cases where the algorithm takes Θ(n2) flips to change an initial

triangulation to the Delaunay triangulation, and one such case is illustrated

Triangulations and meshes in computational geometry 145

in Figure 12. Take a convex upper and a concave lower curve and place
m points on each, such that the upper points lie to the left of the lower
points. The edges connecting the two curves in the initial and the Delaunay
triangulation are shown in Figure 12. For each point, count the positions it
is away from the middle, and for each edge charge the minimum of the two
numbers obtained for its endpoints. In the initial triangulation, the total
charge is about m2, and in the Delaunay triangulation, the total charge is
zero. Each flip moves an endpoint by at most one position and therefore
decreases the charge by at most one. A lower bound of about m2 for the
number of flips follows.

Fig. 12. To the left we see about one-third of the
edges in the initial triangulation, and to the right

we see the same number of edges in the final
Delaunay triangulation

MaxMin Angle property

A flip substitutes two new triangles for two old triangles. It therefore changes
six of the angles. In Figure 10, the new angles are γ1, δ1, β1+β2, γ2, δ2, α1+α2

and the old angles are α1, β1, γ1 + γ2, α2, β2, δ1 + δ2. We claim that for each
of the six new angles there is an old angle that is at least as small. Indeed,
γ1 ≥ α2 because both angles are opposite the same edge, namely bd, and a
lies outside the circle passing through b, c, d. Similarly, δ1 ≥ α1, γ2 ≥ β2,
δ2 ≥ β1, and for trivial reasons β1 + β2 ≥ β1 and α1 + α2 ≥ α1. It follows
that a flip does not decrease the smallest angle in a triangulation. Since we
can go from any triangulation K of S to the Delaunay triangulation, this
implies that the smallest angle in K is no larger than the smallest angle in
the Delaunay triangulation.

MaxMin Angle Lemma. Among all triangulations of a finite set S ⊆ R
2,

the Delaunay triangulation maximizes the minimum angle.

Figure 13 illustrates the above proof of the MaxMin Angle Lemma by
sketching what we call the flip-graph of S. Each triangulation is a node,
and there is a directed arc from node µ to node ν if there is a flip that
changes the triangulation µ to ν. The direction of the arc corresponds to
our requirement that the flip substitutes a locally Delaunay edge for one
that is not locally Delaunay. The running time analysis implies that the
flip-graph is acyclic and that its undirected version is connected. If we allow

146 H. Edelsbrunner

flips in either direction we can go from any triangulation of S to any other
triangulation in less than n2 flips.

Fig. 13. Sketch of flip-graph. The sink is the
Delaunay triangulation. There is a directed path
from every node to the Delaunay triangulation

Bibliographic notes

A proof of the Delaunay lemma and its generalization to arbitrary finite
dimensions is contained in the original paper by Boris Delaunay (1934). The
edge-flip algorithm is due to Charles Lawson (1977). The algorithm does
not generalize to three or higher dimensions. For planar triangulations, the
edge-flip operation is widely used to improve local quality measures; see, e.g.,
Schumaker (1987). Unfortunately, the algorithm gets caught in local optima
for almost all interesting measures. The observation that the Delaunay
triangulation maximizes the smallest angle was first made by Robin Sibson
(1978). Minimizing the largest angle seems more difficult and the only known
polynomial time algorithm uses edge insertions, which are somewhat more
powerful than edge flips (Edelsbrunner, Tan and Waupotitsch 1992).

4. Randomized construction

The algorithm in this section constructs Delaunay triangulations increment-
ally, using edge flips and randomization. After explaining the algorithm, we
present a detailed analysis of the expected amount of resources it requires.

Incremental algorithm

We obtain a fast algorithm for constructing Delaunay triangulations if we
interleave flipping edges with adding points. Denote the points in S ⊆ R

2

as p1, p2, . . . , pn and assume general position. When we add a point to
the triangulation, it can either lie inside or outside the convex hull of the
preceding points. To reduce the outside to the inside case, we start with a
triangulation D0 that consists of a single and sufficiently large triangle xyz.
Define Si = {x, y, z, p1, p2, . . . , pi}, and let Di be the Delaunay triangulation
of Si. The algorithm is a for-loop adding the points in sequence. After

Triangulations and meshes in computational geometry 147

adding a point, it uses edge flips to satisfy the Delaunay lemma before the
next point is added.

for i = 1 to n do

find τi−1 ∈ Di−1 containing pi;
add pi by splitting τi−1 into three;
while ∃ab not locally Delaunay do

flip ab to other diagonal cd
endwhile

endfor.

The two elementary operations used by the algorithm are shown in Figure 14.
Both pictures can be interpreted as the projection of a tetrahedron, though
from different angles. For this reason, the addition of a point inside a triangle
is sometimes called a 1-to-3 flip, while an edge flip is sometimes also called
a 2-to-2 flip.

Fig. 14. To the left, the hollow vertex splits the
triangle into three. To the right, the dashed

diagonal replaces the solid diagonal

Growing star

Note that every new triangle in Di has pi as one of its vertices. Indeed, abc
is a triangle in Di if and only if a, b, c ∈ Si and the circumcircle is empty
of points in Si. But if pi is not one of the vertices then a, b, c ∈ Si−1 and if
the circumcircle is empty of points in Si then it is also empty of points in
Si−1. So abc is also a triangle in Di−1. This implies that all flips during the
insertion of pi occur right around pi.

We need some definitions. The star of pi consists of all triangles that
contain pi. The link of pi consists of all edges of triangles in the star that
are disjoint from pi. Both concepts are illustrated in Figure 15. Right after
pi is added, the link consists of three edges, namely the edges of the triangle
that contains pi. These edges are marked and pushed on the stack to start
the edge-flipping while-loop. Each flip replaces a link edge by an edge with
endpoint pi. At the same time, it removes one triangle in the star and one
outside the star and it adds the two triangles that cover the same quadrangle
to the star. The net effect is one more triangle in the star. The number of

148 H. Edelsbrunner

edge flips is therefore 3 less than the number of edges in the final link, which
is the same as 3 less than the degree of pi in Di.

Fig. 15. The star of the solid vertex to the left
and the link of the same vertex to the right

Number of flips

We temporarily ignore the time needed to find the triangles τi−1. The rest of
the time is proportional to the number of flips needed to add p1, p2, . . . , pn.
We assume p1, p2, . . . , pn is a randomly chosen input sequence. Random
does not mean arbitrary but rather that every permutation of the n points
is equally likely. The expected number of flips is the total number of flips
needed to construct the Delaunay triangulation for all n! input permutations
divided by n!.

Consider inserting the last point, pn. The sum of degrees of all possible
last points is the same as the sum of degrees of all points pi in Dn. The
latter is equal to twice the number of edges and therefore

n∑
i=1

deg pi ≤ 6n.

The number of flips needed to add all last points is therefore at most 6n−
3n = 3n. The total number of flips is

F (n) ≤ n · F (n− 1) + 3n ≤ 3n · n!.

Indeed, if we assume F (n−1) ≤ 3(n−1) · (n−1)! we get n ·F (n−1)+3n =
3(n− 1) · n! + 3n ≤ 3n · n!. The expected number of edge flips needed for n
points is therefore at most 3n.

There is a simple way to say the same thing. The expected number of
flips for the last point is at most 3, and therefore the expected number of
flips to add any point is at most 3.

The history dag

We use the evolution of the Delaunay triangulation to find the triangle τi−1

that contains point pi. Instead of deleting a triangle when it is split or

Triangulations and meshes in computational geometry 149

flipped away, we just make it the parent of the new triangles. Figure 16
shows the two operations to the left and the corresponding parent–child
relations to the right. Each time we split or flip, we add triangles or nodes
to the growing data structure that records the history of the construction.
The evolution from D0 to Dn consists of n splits and an expected number
of at most 3n flips. The resulting directed acyclic graph, or dag for short,
therefore has an expected size of at most 1 + 3n+ 2 · 3n = 9n+ 1 nodes. It
has a unique source, the triangle xyz, and its sinks are the triangles in Dn.

c

d

aa bb

c

a

abc

abd

abc

bcd cad

adb

adc bcd

bc

d
a

bc

d

Fig. 16. Splitting a triangle generates a parent with
three children. Flipping an edge generates two parents

sharing the same two children

Searching and charging

Consider adding the point pi. To find the triangle τi−1 ∈ Di−1, we search a
path of triangles in the history dag that all contain pi. The path begins as
xyz and ends at τi−1. The history dag of Di−1 consists of i layers. Layers
0, 1, . . . , j represent the dag of Dj . Its sinks are the triangles in Dj , and we
let σj ∈ Dj be the triangle that contains pi. Triangles σ0, σ1, . . . , σj form a
not necessarily contiguous subsequence of nodes along the search path. It is
quite possible that some of the triangles σ are the same. Let Gj be the set
of triangles removed from Dj during the insertion of pj+1, and let Hj be the
set of triangles removed from Dj during the hypothetical and independent
insertion of pi into Dj . The two sets are schematically sketched as intervals
along the real line representing the Delaunay triangulation in Figure 17.
We have σj = σj+1 if Gj and Hj are disjoint. Suppose σj 6= σj+1. Then
Xj = Gj ∩Hj 6= ∅, and all triangles on the portion of the path from σj
to σj+1 are generated by flips that remove triangles in Xj . The cost for
searching with pi is therefore at most proportional to the sum of cardXj ,
for j from 0 to i− 2.

150 H. Edelsbrunner

jD j

i

H
jX

jG

jY Z

p+1jp

j

Fig. 17. The intervals represent sets of triangles removed
or added when we insert pj+1 and/or pi to Dj

We write Xj in terms of other sets. These sets represent what happens if
we again hypothetically first insert pi into Dj and then insert pj+1 into the
Delaunay triangulation of Sj ∪ {pi}. Let Yj be the set of triangles removed
during the insertion of pj+1, and let Zj ⊆ Yj be the subset of triangles that
do not belong to Dj . Each triangle in Zj is created during the insertion of
pi, so pi must be one of its vertices. We have

Xj = Gj − (Yj − Zj).

Expectations

We bound the expected search time by bounded the expected total size of
the Xj . Write cardinalities using corresponding lower-case letters. Because
Zj ⊆ Yj and Yj − Zj ⊆ Gj we have

xj = gj − yj + zj .

The expected values of gj and yj−1 are the same, because both count tri-
angles removed by inserting a random jth point. Because the expectation
of a sum is the sum of expectations, we have

E

[
i−2∑
j=0

xj

]
=

i−2∑
j=0

E[gj]− E[yj] + E[zj]

= E[g0 − gi−1] +
i−2∑
j=0

E[zj].

To compute the expected value of zj , we use the fact that among j+2 points,
every pair is equally likely to be pj+1 and pi. For example, if pj+1 and pi are
not connected by an edge in the Delaunay triangulation of Sj ∪ {pj+1, pi}
then Zj = ∅. In general, a triangle in the Delaunay triangulation of Sj ∪ {pi}
has probability at most 3

j+1 of being in the star of pi. The expected number
of triangles removed by inserting pj+1 is at most 4. Because the expectation
of a product is the product of expectations, we have E[zj] ≤ 4·3

j+1 . The

Triangulations and meshes in computational geometry 151

expected length of the search path for pi is

i−2∑
j=0

E[xj] ≤
i−2∑
j=0

12

j + 1
≤ 1 + 12 ln(i− 1).

The expected total time spent on searching in the history dag is
∑

E[xj] ≤
c · n log n.

To summarize, the randomized incremental algorithm constructs the De-
launay triangulation of n points in R

2 in expected time O(n log n) and ex-
pected amount of memory O(n).

Bibliographic notes

The randomized incremental algorithm of this section is due to Guibas,
Knuth and Sharir (1992). It has been generalized to three and higher di-
mensions by Edelsbrunner and Shah (1996). All this is based on earlier
work on randomized algorithms and in particular on the methods developed
by Clarkson and Shor (1989). The arguments used to bound the expected
number of flips and the expected search time are examples of the backwards
analysis introduced by Raimund Seidel (1993).

5. Symbolic perturbation

The computational technique of symbolically perturbing a geometric input
justifies the mathematically convenient assumption of general position. This
section describes a particular perturbation known as SoS or Simulation of
Simplicity.

Orientation test

Let a = (α1, α2), b = (β1, β2), c = (γ1, γ2) be three points in the plane. We
consider a, b, c degenerate if they lie on a common line. This includes the
case where two or all three points are the same. In the degenerate case,
point c is an affine combination of a and b, that is, c = λ1a + λ2b with
λ1 + λ2 = 1. Such λ1, λ2 exist if and only if the determinant of

∆ =

 1 α1 α2

1 β1 β2

1 γ1 γ2

vanishes. In the non-degenerate case, the sequence a, b, c either forms a left-
or a right-turn. We can again use the determinant of ∆ to decide which
it is.

Orientation Claim. The sequence a, b, c forms a left-turn if and only if
det ∆ > 0, and it forms a right-turn if and only if det ∆ < 0.

152 H. Edelsbrunner

Proof. We first check the claim for a0 = (0, 0), b0 = (1, 0), c0 = (0, 1). It is
geometrically obvious that a0, b0, c0 form a left-turn, and indeed

det

 1 0 0

1 1 0
1 0 1

 = 1.

We can continuously move a0, b0, c0 to any other left-turn a, b, c without
ever having three collinear points. Since the determinant changes continu-
ously with the coordinates, it remains positive during the entire motion and
is therefore positive at a, b, c. Symmetry implies that all right-turns have
negative determinant. 2

In-circle test

The in-circle test is formulated for four points a, b, c, d in the plane. We
consider a, b, c, d degenerate if a, b, c lie on a common line or a, b, c, d lie on a
common circle. We already know how to test for points on a common line.
To test for points on a common circle, we recall the definition of lifted points,
â = (α1, α2, α3) with α3 = α2

1 + α2
2, etc. Points a, b, c, d lie on a common

circle if and only if â, b̂, ĉ, d̂ lie on a common plane in R
3; see Figure 11. In

other words, d̂ is an affine combination of â, b̂, ĉ, which is equivalent to

Γ =

1 α1 α2 α3

1 β1 β2 β3

1 γ1 γ2 γ3

1 δ1 δ2 δ3

having zero determinant. In the non-degenerate case, d either lies inside or
outside the circle defined by a, b, c. We can use the determinants of ∆ and
Γ to decide which it is. Note that permuting a, b, c can change the sign of
det Γ without changing the geometric configuration. Since the signs of det Γ
and det ∆ change simultaneously, we can counteract by multiplying the two.

In-circle Claim. Point d lies inside the circle passing through a, b, c if
and only if det ∆ · det Γ < 0, and d lies outside the circle if and only if
det ∆ · det Γ > 0.

Proof. We first check the claim for d0 = (1
2 ,

1
2) and a0 = (0, 0), b0 =

(1, 0), c0 = (0, 1) as before. Point d0 lies at the centre and therefore in-
side the circle passing through a0, b0, c0. The determinant of ∆ is 1, and
that of Γ is

det

1 0 0 0
1 1 0 1
1 0 1 1
1 1

2
1
2

1
2

 = −1

2
,

Triangulations and meshes in computational geometry 153

so their product is negative. As in the proof of the Orientation Claim, we
derive the general result from the special one by continuity. Specifically,
every configuration a, b, c, d, where d lies inside the circle of a, b, c, can be
obtained from a0, b0, c0, d0 by continuous motion avoiding all degeneracies.
The signs of the two determinants remain the same throughout the motion,
and so does their product. This implies the claim for negative products, and
symmetry implies the claim for positive products. 2

Algebraic framework

Let us now take a more abstract and algebraic view of degeneracy as a
geometric phenomenon. For expository reasons, we restrict ourselves to
orientation tests in the plane. Let S be a collection of n points, denoted
as pi = (φi,1, φi,2), for 1 ≤ i ≤ n. By listing the 2n coordinates in a
single sequence, we think of S as a single point in 2n-dimensional space.
Specifically, S is mapped to Z = (ζ1, ζ2, ζ3, . . . , ζ2n) ∈ R

2n, where ζ2i−1 =
φi,1 and ζ2i = φi,2, for 1 ≤ i ≤ n. Point Z is degenerate if and only if

det

 1 ζ2i−1 ζ2i

1 ζ2j−1 ζ2j
1 ζ2k−1 ζ2k

 = 0

for some 1 ≤ i < j < k ≤ n. The equation identifies a differentiable (2n−1)-
dimensional manifold in R

2n. There are
(
n
3

)
such manifolds, M`, and Z is

degenerate if and only if Z ∈ ⋃` M`, as sketched in Figure 18. Each manifold

Fig. 18. Schematic picture of the union of
(2n− 1)-dimensional manifolds in 2n-dimensional

space. The marked point lies on two manifolds and
thus has two degenerate subconfigurations. The
dotted circle bounds a neighbourhood, and most
points in that neighbourhood are non-degenerate

has dimension one less than the ambient space and hence measure zero in
R

2n. We have a finite union of measure zero sets, which still has measure
zero. In other words, most points in an open neighbourhood of Z ∈ R

2n are
non-degenerate. A point nearby Z is often called a perturbation of Z or S.

154 H. Edelsbrunner

The result on neighbourhoods thus implies that there are arbitrarily close
non-degenerate perturbations of S.

Perturbation

We construct a non-degenerate perturbation of S using positive parameters
ε1, ε2, . . . , ε2n. These parameters will be chosen anywhere between arbitrar-
ily and sufficiently small, and we may think of them as infinitesimals. They
will also be chosen sufficiently different, and we will see shortly what this
means. Let Z ∈ R

2n, and for every ε > 0 define

Z(ε) = (ζ1 + ε1, ζ2 + ε2, . . . , ζ2n + ε2n),

where εi = fi(ε) with fi : R → R continuous and fi(0) = 0. If the εi are
sufficiently different, we get the following three properties provided ε > 0 is
sufficiently small.

I. Z(ε) is non-degenerate.

II. Z(ε) retains all non-degenerate properties of Z.

III. The computational overhead for simulating Z(ε) is negligible.

For example, if εi = ε2
i

then ε1 � ε2 � · · · � ε2n and we can do all
computations simply by comparing indices without ever computing a feasible
ε. We demonstrate this by explicitly computing the orientation of the points
pi, pj , pk after perturbation. By definition, that orientation is the sign of the
determinant of

∆(ε) =

 1 ζ2i−1 + ε2i−1 ζ2i + ε2i

1 ζ2j−1 + ε2j−1 ζ2j + ε2j
1 ζ2k−1 + ε2k−1 ζ2k + ε2k

 .

Note that ∆(ε) is a polynomial in ε. The terms with smaller power are more
significant than those with larger power. We assume i < j < k and list the
terms of ∆(ε) in the order of decreasing significance, that is,

det ∆(ε) = det ∆− det ∆1 · ε22i−1

+ det ∆2 · ε22i
+ det ∆3 · ε22j−1

−1 · ε22j−1
ε2

2i ± . . . ,

where

∆ =

 1 ζ2i−1 ζ2i

1 ζ2j−1 ζ2j
1 ζ2k−1 ζ2k

 ,

∆1 =

[
1 ζ2j
1 ζ2k

]
,

Triangulations and meshes in computational geometry 155

∆2 =

[
1 ζ2j−1

1 ζ2k−1

]
,

∆3 =

[
1 ζ2i
1 ζ2k

]
.

Property I is satisfied because the fifth term is non-zero, and its influence
on the sign of the determinant cannot be cancelled by subsequent terms.
Property II is satisfied because the sign of the perturbed determinant is the
same as that of the unperturbed one, unless the latter vanishes.

Implementation

In order to show Property III, we give an implementation of the test for
Z(ε). First we sort the indices such that i < j < k, and we count the
number of transpositions. Then we determine whether the three perturbed
points form a left- or a right-turn by computing determinants of the four
submatrices listed above.

boolean LeftTurn(integer i, j, k):
assert i < j < k;
case det ∆ 6= 0: return det ∆ > 0;
case det ∆1 6= 0: return det ∆1 < 0;
case det ∆2 6= 0: return det ∆2 > 0;
case det ∆3 6= 0: return det ∆3 > 0;
otherwise: return false.

If the number of transpositions needed to sort i, j, k is odd, then the sorting
reverses the sign, and we correct the reversal by reversing the result of the
function LeftTurn.

As an important detail we note that signs of determinants need to be
computed exactly. With normal floating point arithmetic, this is generally
not possible. We must therefore resort to exact arithmetic methods using
long integer or other representations of coordinates. These methods are
typically more costly than floating point arithmetic, but differences vary
widely among different computer hardware. A pragmatic compromise uses
floating point arithmetic together with error analysis. After computing the
determinant with floating point arithmetic, we check whether the absolute
value is large enough for its sign to be guaranteed. Only if that guarantee
cannot be obtained do we repeat the computation in exact arithmetic.

Bibliographic notes

The idea of using symbolic perturbation for computational reasons is already
present in the work of George Danzig on linear programming (Danzig 1963).
It reappeared in computational geometry with the work of four independent

156 H. Edelsbrunner

groups of authors. Edelsbrunner and Mücke (1990) develop SoS, which
is the method described in this section. Yap (1990) studies the class of
perturbations obtained with different orderings of infinitesimals. Emiris
and Canny (1995) introduce perturbations along straight lines. Michelucci
(1995) exploits randomness in the design of perturbations.

Symbolic perturbations as a general computational technique within com-
putational geometry remains a controversial subject. It succeeds in extend-
ing partially to completely correct software for some but not all geometric
problems. Seidel (1998) addresses this issue, offers a unified view of sym-
bolic perturbation, and discusses limitations of the method. Fortune and
Van Wyk (1996) describe a floating point filter that reduces the overhead
needed for exact computation.

6. Constrained triangulation

This section studies triangulations in the plane constrained by edges spe-
cified as part of the input. We show that there is a unique constrained tri-
angulation that is closest, in some sense, to the (unconstrained) Delaunay
triangulation.

Constraining line segments

The preceding sections constructed triangulations for a given set of points.
The input now consists of a finite set of points, S ⊆ R

2, together with a
finite set of line segments, L, each connecting two points in S. We require
that any two line segments are either disjoint or meet at most in a common
endpoint. A constrained triangulation of S and L is a triangulation of S that
contains all line segments of L as edges. Figure 19 illustrates that we can
construct a constrained triangulation by adding straight edges connecting
points in S as long as they have no interior points in common with previous
edges.

Fig. 19. Given the points and solid edges, we form a
constrained triangulation by adding as many dotted

edges as possible without creating improper intersections

Triangulations and meshes in computational geometry 157

Plane-sweep algorithm

The idea of organizing the actions of the algorithm around a line sweeping
over the plane leads to an efficient way of constructing constrained triangu-
lations. We use a vertical line that sweeps over the plane from left to right,
as shown in Figure 20. The algorithm uses two data structures. The sched-
ule, X, orders events in time. The cross-section, Y , stores the line segments
in L that currently intersect the sweep-line. The algorithm is defined by the
following invariant.

(I) At any moment in time, the partial triangulation contains all edges
in L, a maximal number of edges connecting points to the left of the
sweep-line, and no other edges.

Fig. 20. Snapshot of plane-sweep constructing
a constrained triangulation

Invariant (I) implies that between the left endpoints of two constraining line
segments adjacent along the sweep-line we have a convex chain of edges in
the partial triangulation. To ensure that new edges can each be added in
constant time, the algorithm remembers the rightmost vertex in each chain.
If the point p encountered next by the sweep-line falls inside one of the
intervals along the sweep-line, the algorithm connects p to the corresponding
rightmost vertex. It then proceeds in a clockwise and an anticlockwise order
along the convex chain. Each step either adds a new edge or it ends the walk.
If p is the right endpoint of a line segment then it separates two intervals
along the sweep-line, and the algorithm does the same kind of walking twice,
once for each interval.

The schedule is constructed by sorting the points in S from left to right,
which can be done in time O(n log n), where n = cardS. The cross-section
is maintained as a dictionary, which supports search, insertion, deletion all
in time O(logn). There is a search for each point in S and an insertion–
deletion pair for each line segment in L, taking total time O(n log n). Fewer

158 H. Edelsbrunner

than 3n edges are added to the triangulation, each in constant time. The
plane-sweep algorithm thus constructs a constrained triangulation of S and
L in time O(n log n).

Constrained Delaunay triangulations

The triangulations constructed by plane-sweep usually have many small and
large angles. We use a notion of visibility between points to introduce a
constrained triangulation that avoids small angles to the extent possible.

Points x, y ∈ R
2 are visible from each other if xy contains no point of S in

its interior and it shares no interior point with a constraining line segment.
Formally, intxy ∩ S = ∅ and intxy ∩ uv = ∅ for all uv ∈ L. Assume general
position. An edge ab, with a, b ∈ S, belongs to the constrained Delaunay
triangulation of S and L if

(i) ab ∈ L, or
(ii) a and b are visible from each other and there is a circle passing through

a and b such that each point inside this circle is invisible from every
point x ∈ int ab.

We say the circle in (ii) witnesses the membership of ab in the constrained
Delaunay triangulation. Figure 21 illustrates this definition. Note if L = ∅
then the constrained Delaunay triangulation of S and L is the Delaunay
triangulation of S. More generally, it is however unclear that what we
defined is indeed a triangulation. For example, why is it true that no two
edges satisfying (i) or (ii) cross?

b
c

a

Fig. 21. Constrained Delaunay triangulation for
seven points and one constraining line segment.
The circumcircle of abc encloses only points that

are invisible from all points of int ab

Edge flipping

We introduce a generalized concept of being locally Delaunay, and use it
to prove that the above definition makes sense. Let K be any constrained

Triangulations and meshes in computational geometry 159

triangulation of S and L. An edge ab ∈ K is locally Delaunay if ab ∈ L,
or ab is a convex hull edge, or d lies outside the circumcircle of abc, where
abc, abd ∈ K.

Constrained Delaunay Lemma. If every edge of K is locally Delaunay
then K is the constrained Delaunay triangulation of S and L.

Proof. We show that every edge in K satisfies (i) or (ii) and therefore be-
longs to the constrained Delaunay triangulation. The claim follows because
every additional edge crosses at least one edge of K and therefore of the
constrained Delaunay triangulation.

Let ab be an edge and p a vertex in K. Assume ab 6∈ L, for else ab belongs
to the constrained Delaunay triangulation for trivial reasons. Assume also
that ab is not a convex hull edge, for else we can easily find a circle passing
through a and b such that p lies outside the circle. Hence, ab belongs to two
triangles, and we let abc be the one separated from p by the line passing
through ab. We need to prove that if p is visible from a point x ∈ int ab then
it lies outside the circumcircle of abc. Consider the sequence of edges in K
crossing xp. Since x and p are visible from each other, all these edges are
not in L. We can therefore apply the argument of the proof of the original
Delaunay lemma, which is illustrated in Figure 9. 2

This result suggests we use the edge-flipping algorithm to construct the
constrained Delaunay triangulation. The only difference to the original edge-
flipping algorithm is that edges in L are not flipped, since they are locally
Delaunay by definition. As before, the algorithm halts in time O(n2) after
fewer than

(
n
2

)
flips. The analysis of angle changes during an edge flip

presented in Section 3 implies that the MaxMin Angle Lemma also holds in
the constrained case.

Constrained MaxMin Angle Lemma. Among all constrained triangu-
lations of S and L, the constrained Delaunay triangulation maximizes the
minimum angle.

Extended Voronoi diagrams

Just as for ordinary Delaunay triangulations, every constrained Delaunay
triangulation has a dual Voronoi diagram, but in a surface that is more
complicated than the Euclidean plane. Imagine R

2 is a sheet of paper, Σ0,
with the points of S and the line segments in L drawn on it. For each `i ∈ L,
we cut Σ0 open along `i and glue another sheet Σi, which is also cut open
along `i. The gluing is done around `i such that every traveller who crosses
`i switches from Σ0 to Σi and vice versa. A cross-section of the particular
gluing necessary to achieve that effect is illustrated in Figure 22. It is not
possible to do this without self-intersections in R

3, but in R
4 there is already

160 H. Edelsbrunner

sufficient space to embed the resulting surface. Call Σ0 the primary sheet,
and after the gluing is done we have m = cardL secondary sheets Σi for
1 ≤ i ≤ m. Each secondary sheet is attached to Σ0, but not connected to
any of the other secondary sheets. For each point x ∈ R

2, we now have
m+ 1 copies xi ∈ Σi, one on each sheet.

Σ 0

Σ i

Fig. 22. The gap in Σ0 represents the cut along `i.
The secondary sheet Σi is glued to Σ0 so that

each path crossing `i switches sheets

We know what it means for two points on the primary sheet to be visible
from each other. For other pairs we need a more general definition. For
i 6= 0, points x0 ∈ Σ0 and yi ∈ Σi are visible if xy crosses `i, and `i is the
first constraining line segment crossed if we traverse xy in the direction from
x to y. The distance between points x0 and yi is

d(x0, yi) =

{ ‖x− y‖, if x0, yi are visible,
∞, otherwise.

The new distance function is used to define the extended Voronoi diagram,
which is illustrated in Figure 23. A circle that witnesses the membership of
an edge ab in the constrained Delaunay triangulation has its centre on the
primary or on a secondary sheet. In either case, that centre is closer to a
and b than to any other point in S. This implies that the Voronoi regions
of a and b meet along a non-empty common portion of their boundary.
Conversely, every point on an edge of the extended Voronoi diagram is the
centre of a circle witnessing the membership of the corresponding edge in
the constrained Delaunay triangulation.

Bibliographic notes

The idea of using plane-sweep for solving two-dimensional geometric prob-
lems is almost as old as the field of computational geometry itself. It was
propagated as a general algorithmic paradigm by Nievergelt and Preparata
(1982). Constrained Delaunay triangulations were independently discovered
by Lee and Lin (1986) and by Paul Chew (1987). Extended Voronoi dia-
grams are due to Raimund Seidel (1988), who used them to construct con-
strained Delaunay triangulations in worst-case time O(n log n).

Triangulations and meshes in computational geometry 161

Fig. 23. Extended Voronoi diagram dual to the
constrained Delaunay triangulation in Figure 21.
There is only one secondary sheet glued to the
primary one. The solid Voronoi edges lie in the

primary sheet and the dotted ones in the
secondary sheet

7. Delaunay refinement

This section demonstrates the use of Delaunay triangulations in constructing
triangle meshes in the plane. The idea is to add new vertices until the
triangulation forms a satisfying mesh. Constraining edges are covered by
Delaunay edges, although forcing them into the triangulation as we did in
Section 6 would also be possible.

The meshing problem

The general objective in mesh generation is to decompose a geometric space
into elements. The elements are restricted in type and shape, and the num-
ber of elements should not be too big. We discuss a concrete version of the
two-dimensional mesh generation problem.

Input. A polygonal region in the plane, possibly with holes and with con-
straining edges and vertices inside the region.

Output. A triangulation of the region whose edges cover all input edges and
whose vertices cover all input vertices.

The graph of input vertices and edges is denoted by G, and the output
triangulation is denoted by K. It is convenient to enclose G in a bounding
box and to triangulate everything inside that box. A triangulation of the
input region is obtained by taking a subset of the triangles. Figure 24 shows
input and output for a particular mesh generation problem.

162 H. Edelsbrunner

Fig. 24. The solid vertices and edges define the input
graph, and together with the hollow vertices and
dotted edges they define the output triangulation

Triangle quality

The quality of a triangle abc is measured by its smallest angle, θ. Two
alternative choices would be the largest angle and the aspect ratio. We
argue that a good lower bound for the smallest angle implies good bounds
for the other two expressions of quality. The largest angle is at most π− 2θ,
so if the smallest angle is bounded away from zero then the largest angle
is bounded away from π. The converse is not true. The aspect ratio is the
length of the longest edge, which we assume is ac, divided by the distance
of b from ac; see Figure 25. Suppose the smallest angle occurs at a. Then
‖b− x‖ = ‖b− a‖ · sin θ, where x is the orthogonal projection of b onto ac.
The edge ab is at least as long as cb, and therefore ‖b− a‖ ≥ ‖c− a‖/2. It
follows that

1

sin θ
≤ ‖c− a‖

‖b− x‖ ≤ 2

sin θ
.

In words, the aspect ratio is linearly related to one over the smallest angle.
If θ is bounded away from zero then the aspect ratio is bounded from above
by some constant, and vice versa.

a cx

b

θ

Fig. 25. Triangle with base ac,
height bx, and minimum angle θ

The goal is to construct K so its smallest angle is no less than some
constant, and the number of triangles in K is at most some constant times
the minimum. We see from the example in Figure 24 that a small angle

Triangulations and meshes in computational geometry 163

between two input edges cannot possibly be resolved. A reasonable way to
deal with this difficulty is to accept sharp input features as unavoidable and
to isolate them so they cause no deterioration of the triangulation nearby.
In this section, we assume that there are no sharp input features, and in
particular that all input angles are at least π

2 .

Delaunay refinement

We construct K as the Delaunay triangulation of a set of points that includes
all input points. Other points are added one by one to resolve input edges
that are not covered and triangles that have too small an angle.

(1) Suppose ab is a segment of an edge in G that is not covered by edges of
the current Delaunay triangulation. This can only be because some of
the vertices lie inside the diameter circle of ab, as in Figure 26. We say
these vertices encroach upon ab, and we use function split1 to add the
midpoint of ab and to repair the Delaunay triangulation with a series
of edge flips.

x

p

ba

Fig. 26. Vertex p encroaches upon segment ab. After
adding the midpoint, we have two smaller diameter
circles, both contained in the diameter circle of ab

(2) Suppose a triangle abc in the current Delaunay triangulation K is
skinny, that is, it has an angle less than the required lower bound.
We use function split2 to add the circumcentre as a new vertex, such
as point x in Figure 27. Since its circumcircle is no longer empty, tri-
angle abc is guaranteed to be removed by one of the edge flips used to
repair the Delaunay triangulation.

θ c

b

x

a

2θ

Fig. 27. The angle ∠axb is twice the angle ∠acb

164 H. Edelsbrunner

Algorithm

The first priority of the algorithm is to cover input edges, and its second
priority is to resolve skinny triangles. Before starting the algorithm, we
place G inside a rectangular box B. The purpose of the box is to contain
the points added by the algorithm and thus prevent the perpetual growth
of the meshed region. To be specific, we take B three times the size of
the minimum enclosing rectangle of G. Box B has space for nine copies
of the rectangle, and we place G inside the centre copy. Each side of B is
decomposed into three equally long edges. Refer to Figure 24, where for
aesthetic reasons the box is drawn smaller than required but with the right
combinatorics. Initially, K is the Delaunay triangulation of the input points,
which includes the 12 vertices along the boundary of B.

loop

while ∃ encroached segment ab do
split1(ab)

endwhile;
if no skinny triangle left then exit endif;
let abc ∈ K be skinny and x its circumcentre;
x encroaches upon segments s1, s2, . . . , sk;
if k ≥ 1 then split1(si) for all i

else split2(abc)
endif

forever.

The choice of B implies that no circumcentre x will ever lie outside the box.
This is because the initial 12 or fewer triangles next to the box boundary
have non-obtuse angles opposite to boundary edges. Since the circumcircles
of Delaunay triangles are empty, this implies that all circumcentres lie inside
B. The algorithm maintains the non-obtuseness of angles opposing input
edges and thus limits circumcentres to lie inside B.

Preliminary analysis

The behaviour of the algorithm is expressed by the points it adds as vertices
to the mesh. We already know that all points lie on the boundary or inside
the box B, which has finite area. If we can prove that no two points are
less than a positive constant 2ε apart, then this implies that the algorithm
halts after adding finitely many points. To be specific, let w be the width
and h the height of B. The area of the box obtained by extending B by ε
on each side is A = (w+2ε)(h+2ε). The number of points inside the box is
n ≤ A/ε2π. This is because the disks with radius ε centred at the vertices of
the mesh have pairwise disjoint interiors, and they are all contained in the
extended box. This type of area argument is common in meshing and related

Triangulations and meshes in computational geometry 165

to packing, as illustrated in Figure 28. The existence of a positive ε will be
established in Section 8. The analysis there will refine the area argument
by varying the sizes of disks with their location inside the meshing region.

Fig. 28. The centres of the disk are contained in
the inner box, and the disks are contained in the box

enlarged by the disk radius in all four directions

In terms of running time, the most expensive activity is edge flipping
used to repair the Delaunay triangulation. The expected linear bound on
the number proved in Section 4 does not apply because points are not added
in a random order. The total number of flips is less than

(
n
2

)
. This implies

an upper bound of O(n2) on the running time, as long as the cost for adding
a new vertex is at most O(n).

Bibliographic notes

The algorithm described in this section is due to Jim Ruppert (1995). Ex-
periments suggest it achieves best results if the skinny triangles are removed
in order of non-decreasing smallest angle. A predecessor of Ruppert’s al-
gorithm is the version of the Delaunay refinement method by Paul Chew
(1989). That algorithm is also described in Chew (1993), where it is gen-
eralized to surfaces in three-dimensional space. The main contribution of
Ruppert is a detailed analysis of the Delaunay refinement method. The
gained insights are powerful enough to permit modifications of the general
method that guarantee a close to optimum mesh.

8. Local feature size

This section analyses the Delaunay refinement algorithm of Section 7. It
proves an upper bound on the number of triangles generated by the al-
gorithm and an asymptotically matching lower bound on the number of
triangles that must be generated.

166 H. Edelsbrunner

Local feature size

We understand the Delaunay refinement algorithm through relating its ac-
tions to the local feature size defined as a map f : R

2 → R. For a point
x ∈ R

2, f(x) is the smallest radius r such that the closed disk with centre x
and radius r

(i) contains two vertices of G,
(ii) intersects one edge of G and contains one vertex of G that is not end-

point of that edge, or
(iii) intersects two vertex disjoint edges of G.

The three cases are illustrated in Figure 29. Because of (i) we have f(a) ≤
‖a− b‖ for all vertices a 6= b in G. The local feature size satisfies a one-sided
Lipschitz inequality, which implies continuity.

x x x

Fig. 29. In each case, the radius of the circle
is the local feature size at x

Lipschitz Condition. |f(x)− f(y)| ≤ ‖x− y‖.
Proof. To get a contradiction, assume there are points x, y with f(x) <
f(y) − ‖x− y‖. The disk with radius f(x) around x is contained in the
interior of the disk with radius f(y) around y. We can thus shrink the disk
of y while maintaining its non-empty intersection with two disjoint vertices
or edges of G. This contradicts the definition of f(y). 2

Constants

The analysis of the algorithm uses two carefully chosen positive constants
C1 and C2 such that

1 +
√

2C2 ≤ C1 ≤ C2 − 1

2 sinα
,

where α is the lower bound on angles enforced by the Delaunay refine-
ment algorithm. The constraints that correspond to the two inequalities are
bounded by lines, and we have a solution if and only if the slope of the first
line is greater than that of the second, 1/

√
2 > 2 sinα. Figure 30 illustrates

the two constraints for α < arcsin 1
2
√

2
= 20.7 . . .◦. The two lines intersect

at a point in the positive quadrant, and the coordinates of that point are
the smallest constants C1 and C2 that satisfy the inequalities.

Triangulations and meshes in computational geometry 167

C

1

1 C

2

1

Fig. 30. Each line bounds a half-plane of points
(C1, C2) that satisfy one inequality. The shaded

wedge contains all points that satisfy both inequalities

Invariants

The algorithm starts with the vertices of G and generates all other vertices
in sequence. We show that, when a new vertex is added, its distance to
already present vertices is not much smaller than the local feature size.

Invariants. Let p and x be two vertices such that x was added after p. If
x was added by

(A) split1 then ‖x− p‖ ≥ f(x)/C1,

(B) split2 then ‖x− p‖ ≥ f(x)/C2.

Proof. We first prove (B). In this case, point x is the circumcentre of a
skinny triangle abc. Let θ < α at c be the smallest angle in abc, as in
Figure 27. Assume that either a and b both belong to G or that a was
added after b. We distinguish three cases depending on how a became to be
a vertex. Let L be the length of ab.

Case 1. a is a vertex of G. Then b is also a vertex of G and f(a) ≤ L.

Case 2. a was added as the circumcentre of a circle with radius r′. Prior to
the addition of a this circle was empty, and hence r′ ≤ L. By induction,
we have f(a) ≤ r′ · C2 and therefore f(a) ≤ L · C2.

Case 3. a was added as the midpoint of a segment. Then f(a) ≤ L · C1,
again by induction.

Since 1 ≤ C2 ≤ C1, we have f(a) ≤ L ·C1 in all three cases. Let r = ‖x− a‖
be the radius of the circumcircle of abc. Using the Lipschitz Condition and
L = 2r sin θ from Figure 27 we get

f(x) ≤ f(a) + r

≤ L · C1 + r

≤ 2r · sin θ · C1 + r.

168 H. Edelsbrunner

Since θ < α and C2 ≥ 1 + 2C1 · sinα we get

r ≥ f(x)

1 + 2C1 · sinα ≥ f(x)

C2
,

as required.
We use a similar argument to prove (A). In this case, x is the midpoint of

a segment ab. Let r = ‖x− a‖ = ‖x− b‖ be the radius of the smallest circle
passing through a and b, and let p be a vertex that encroaches upon ab, as in
Figure 26. Consider first the case where p lies on an input edge that shares
no endpoint with the input edge of ab. Then f(x) ≤ r by condition (iii)
of the definition of local feature size. Consider second the case where the
splitting of ab is triggered by rejecting the addition of a circumcentre. Let p
be this circumcentre and let r′ be the radius of its circle. Since p lies inside
the diameter circle of ab we have r′ ≤ √

2r. Using the Lipschitz Condition
and induction we get

f(x) ≤ f(p) + r

≤ r′ · C2 + r

≤
√

2r · C2 + r.

Using C1 ≥ 1 +
√

2C2 we get

r ≥ f(x)

1 +
√

2C2

≥ f(x)

C1
,

as required. 2

Upper bound

Invariants (A) and (B) guarantee that vertices added to the triangulation
cannot get arbitrarily close to preceding vertices. We show that this implies
that they cannot get close to succeeding vertices either. Recall that K is
the final triangulation generated by the Delaunay refinement algorithm.

Smallest Gap Lemma. ‖a− b‖ ≥ f(a)
1+C1

for all vertices a, b ∈ K.

Proof. If b precedes a then ‖a− b‖ ≥ f(a)/C1 ≥ f(a)/(1+C1). Otherwise,
we have ‖b− a‖ ≥ f(b)/C1 and therefore

f(a) ≤ f(b) + ‖a− b‖ ≤ ‖a− b‖ · (1 + C1),

as claimed. 2

Since vertices cannot get arbitrarily close to each other, we can use an area
argument to show that the algorithm halts after adding a finite number of
vertices. We relate the number of vertices to the integral of 1/f2(x). Recall
that B is the bounding box used in the construction of K.

Triangulations and meshes in computational geometry 169

Upper Bound Lemma. The number of vertices in K is at most some
constant times

∫
B dx/f2(x).

Proof. For each vertex a of K, let Da be the disk with centre a and radius
ra = f(a)/(2 + 2C1). By the Smallest Gap Lemma, the disks are pairwise
disjoint. At least one quarter of each disk lies inside B. Therefore,∫

B

dx

f2(x)
≥ 1

4
·
∑
a

∫
Da

dx

f2(x)

≥ 1

4
·
∑
a

r2
aπ

(f(a) + ra)2

≥ 1

4
·
∑
a

π

(3 + 2C1)2
.

This is a constant times the number of vertices. 2

Two geometric results

We prepare the lower bound argument with two geometric results on tri-
angles with angles no smaller than some constant α > 0. Two edges
of such a triangle abc cannot be too different in length, and specifically,
‖a−c‖
‖a−b‖ ≤ % = 1/ sin α

2 . If we have a chain of triangles connected through

shared edges, the length ratio cannot exceed %t, where t is the number of
triangles. Two edges sharing a common vertex are connected by the chain of
triangles around that vertex. That chain cannot be longer than 2π

α , simply
because we cannot pack more angles into 2π.

Length Ratio Lemma. The length ratio between two edges sharing a
common vertex is at most %2π/α.

The second result concerns covering a triangle with four disks, one each
around the three vertices and the circumcentre. For each vertex we take
a disk with radius c0 times the length of the shortest edge. For the cir-
cumcentre we take a disk with radius 1 − c2 times the circumradius. For a
general triangle, we can keep c0 fixed and force c2 as close to zero as we like,
just by decreasing the angle. If angles cannot be arbitrarily small, then c2
can also be bounded away from zero.

Triangle Cover Lemma. For each constant c0 > 0 there is a constant
c2 > 0 such that the four disks cover the triangle.

Proof. Refer to Figure 31. Let R be the circumradius and ab be the shortest
of the three edges. Its length is ‖a− b‖ ≥ 2R·sin α

2 . The disk around a covers
all points at distance at most c0 · ‖a− b‖ from a, and we assume without
loss of generality that c0 < 1

2 . The distance between the circumcentre, z,

170 H. Edelsbrunner

and the point y ∈ ab at distance c0 · ‖a− b‖ from a is

‖y − z‖ <

√
R2 − c20‖a− b‖2

≤
√
R2 ·

(
1− 4c20 · sin2 α

2

)
< R ·

(
1− 2c20 · sin2 α

2

)
.

All other points on triangle edges not covered by disks around a, b, c are
at most that distance from z. Since c0 and α are positive constants, c2 =
2c20 · sin2 α

2 is also a positive constant. 2

b

a

z

y

Fig. 31. The disks constructed for a triangle
and its three vertices cover the triangle

Lower bound

The reason for picking the disk of radius (1− c2)R around the circumcentre
is that for a point x inside this disk the local feature size cannot be arbit-
rarily small. In particular, it cannot be smaller than the distance from the
circumcircle times the cosine of half the smallest angle, f(x) ≥ c2R · cos α

2 .
To get a similar result for disks around vertices, let L be the length of
the shortest edge incident to a vertex a. The local feature size of a is at
least L · sinα. By choosing c0 = sinα

2 we get f(a) ≥ 2c0L and therefore
f(x) ≥ f(a) − ‖a− x‖ ≥ c0L for every point x inside the disk with radius
c0L around a.

We use these observations to show that any algorithm that constructs
triangles with angles no smaller than some constant α > 0 generates at least
some constant times the integral of 1/f2(x) many vertices. It follows that the
algorithm in Section 7 constructs meshes with asymptotically minimum size.

Lower Bound Lemma. If K is a triangle mesh of G with all angles
larger than α, then the number of vertices is at least some constant times∫
B dx/f2(x).

Triangulations and meshes in computational geometry 171

Proof. Around each vertex a ∈ K draw a disk with radius equal to sinα
2

times the length of the shortest incident edge. Let c0 = sinα
2 %π/α and use

the Triangle Cover Lemma to pick a matching constant c2 > 0. For each
triangle abc ∈ K draw the disk with radius 1 − c2 times the circumradius
around the circumcentre. Each triangle is covered by its four disks, which
implies that the mesh is covered by the collection of disks.

For each disk Di in the collection, let fi be the minimum local feature
size at any point x ∈ Di. By what we said earlier, that minimum is at least
some constant fraction of the radius of Di, fi ≥ ri/C. Given that the disks
cover the mesh we have∫

B

dx

f2(x)
≤

∑
i

∫
Di

dx

f2(x)

≤
∑
i

r2
i π

f2
i

≤
∑
i

C2π.

The number of triangles is less than twice the number of vertices, which we
denote as n. Hence,

n ≥
∑
i

1

3
≥ 1

3C2π

∫
B

dx

f2(x)
,

as claimed. 2

Bibliographic notes

The idea of using the local feature size function in the analysis of the
Delaunay refinement algorithm is due to Jim Ruppert. The details of the
analysis left out in the journal publication Ruppert (1995) can be found
in the technical report Ruppert (1992). Bern, Eppstein and Gilbert (1994)
show that the same technical result (constant minimum angle and constant
times minimum number of triangles) can also be achieved using quad-trees.
Experimentally, the approach with Delaunay triangulations seems to gen-
erate meshes with fewer and nicer triangles. One reason for the better
performance might be the absence of any directional bias from Delaunay
triangulations.

9. Lifting and polarity

The Delaunay tetrahedrization of a finite set of points in R
3 is dual to the

Voronoi diagram of the same set. This section introduces both concepts and
shows how they can be obtained as projections of the boundary of convex
polyhedra.

172 H. Edelsbrunner

Voronoi diagrams

The Voronoi region of a point p in a finite collection S ⊆ R
3 is the set of

points at least as close to p as to any other point in S,

Vp = {x ∈ R
3 : ‖x− p‖ ≤ ‖x− q‖, ∀q ∈ S}.

Each inequality defines a closed half-space, and Vp is the intersection of a
finite collection of such half-spaces. In other words, Vp is a convex poly-
hedron, maybe like the one shown in Figure 32. In the generic case, every
vertex of Vp belongs to only three facets and three edges of the polyhedron.
If Vp is bounded then it is the convex hull of its vertices. It is also possible
that Vp is unbounded. This is the case if and only if there is a plane through
p with all points of S on or on one side of the plane.

p

Fig. 32. The Voronoi polyhedron of a point in a
body-centred cube lattice. The relevant neighbours of
the cube centre p are the eight corners of the cube and

the centres of the six adjacent cubes

The Voronoi regions together with their shared facets, edges, vertices form
the Voronoi diagram of S. A point x that belongs to k Voronoi regions is
equally far from the k generating points. It follows that the k points lie
on a common sphere. If the points are in general position then k ≤ 4. A
Voronoi vertex x belongs to at least four Voronoi regions, and assuming
general position it belongs to exactly four regions.

Delaunay tetrahedrization

We obtain the Delaunay tetrahedrization by taking the dual of the Voronoi
diagram. The Delaunay vertices are the points in S. The Delaunay edges
connect generators of Voronoi regions that share a common facet. The
Delaunay facets connect generators of Voronoi regions that share a com-
mon edge. Assuming general position, each edge is shared by three Voronoi
regions and the Delaunay facets are triangles. The Delaunay polyhedra

Triangulations and meshes in computational geometry 173

connect generators of Voronoi regions that share a common vertex. As-
suming general position, each vertex is shared by four Voronoi regions and
the Delaunay polyhedra are tetrahedra. Consider point p in Figure 32. Its
Voronoi polyhedron has 14 facets, 36 edges, and 24 vertices. It follows that
p belongs to 14 Delaunay edges, 36 Delaunay triangles, and 24 Delaunay
tetrahedra, as illustrated in Figure 33.

p

Fig. 33. The Delaunay neighbourhood of a point
in a body-centred cube lattice

Assuming general position of the points in S, the Delaunay tetrahedriza-
tion is a collection of simplices. To prove that it is a simplicial complex, we
still need to show that the simplices avoid improper intersections. We do
this by introducing geometric transformations that relate Voronoi diagrams
and Delaunay tetrahedrizations in R

3 with boundary complexes of convex
polyhedra in R

4.

Distance maps

The square distance from p ∈ S is the map πp : R
3 → R defined by πp(x) =

‖x− p‖2. Its graph is a paraboloid of revolution in R
4. We simplify notation

by supressing the difference between a function and its graph. Figure 34
illustrates this idea in one lower dimension. Take the collection of all square
distance functions defined by points in S. The pointwise minimum is the
map πS : R

3 → R defined by

πS(x) = min{πp(x) : p ∈ S}.
Its graph is the lower envelope of the collection of paraboloids. By definition
of Voronoi region, πS(x) = πp(x) if and only if x ∈ Vp. We can therefore
think of Vp as the projection of the portion of the lower envelope contributed
by the paraboloid πp.

174 H. Edelsbrunner

p

Fig. 34. The graph of the square
distance function of a point p in the plane

Linearization

All square distance functions have the same quadratic term, which is ‖x‖2.
If we subtract that term we get linear functions, namely

fp(x) = πp(x)− ‖x‖2

= (x− p)T · (x− p)− xT · x
= −2pT · x+ ‖p‖2.

The graph of fp is a hyperplane in R
4. The same transformation warps the

hyperplane x4 = 0 to the upside-down paraboloid Π defined as the graph
of the map defined by Π(x) = −‖x‖2. Figure 35 shows the result of the
transformation applied to the plane and paraboloid in Figure 34. We can
apply the transformation to the entire collection of paraboloids at once.
Each point in R

4 travels vertically, that is, parallel to the x4-axis. The
travelled distance is the square distance to the x4-axis. Paraboloids go to
hyperplanes, intersections of paraboloids go to intersections of hyperplanes,
and the lower envelope of the paraboloids goes to the lower envelope of the
hyperplanes.

Π

Fig. 35. The plane in Figure 34
becomes an upside-down paraboloid,
and the paraboloid becomes a plane

Replace each hyperplane by the closed half-space bounded from above by
the hyperplane. The intersection of the half-spaces is a convex polyhedron F
in R

4, and the lower envelope of the hyperplanes is the boundary of F . It is

Triangulations and meshes in computational geometry 175

a complex of convex faces of dimension 3, 2, 1, 0. Since the transformation
moves points vertically, the projection onto x4 = 0 of the lower envelope
of paraboloids and the lower envelope of hyperplanes are the same. In
particular, the projection of each three-dimensional face of F is a Voronoi
region, and the projection of the entire boundary complex is the Voronoi
diagram.

Polarity

We still need to describe what all this has to do with the Delaunay tetra-
hedrization of S. Instead of addressing this question directly, we first study
the relationship between non-vertical hyperplanes and their polar points
in R

4.
A non-vertical hyperplane is the graph of a linear function f : R

3 → R,
which can generally be defined by a point p ∈ R

3 and a scalar c ∈ R, that is,

f(x) = −2pT · x+ ‖p‖2 − c.

The hyperplane parallel to f and tangent to Π is defined by the equation
−2pT · x + ‖p‖2. The vertical distance between the two hyperplanes is |c|.
The polar point of f is g = f∗ = (p,−‖p‖2 + c). The vertical distance
between g and f is 2|c|, and the parallel tangent hyperplane lies right in
the middle between g and f . Furthermore, the vertical line through g also
passes through the point where the tangent hyperplane touches Π. It follows
that g ∈ Π if and only if f is tangent to Π. Figure 36 shows a few examples
of hyperplanes and their polar points in R

2. Since hyperplanes are non-
vertical, the points lying above, on, below are unambiguously defined. Let
f1, f2 be two non-vertical hyperplanes and g1, g2 their polar points.

Π

f

g

g

2f1f

1p

2

2p

g1

Fig. 36. Points g1, g2, g are polar to the lines
(hyperplanes) f1, f2, f . Lines f1, f2 are warped
images of the distance square functions of the

points p1, p2 on the real line

Order Reversal Claim. Point g1 lies above, on, below hyperplane f2 if
and only if point g2 lies above, on, below hyperplane f1.

176 H. Edelsbrunner

Proof. Let gi = (pi,−‖pi‖2 + ci) for i = 1, 2. The algebraic expression for
g1 above f2 is

−‖p1‖2 + c1 > −2pT2 · p1 + ‖p2‖2 − c2.

We move terms left and right and use the fact that vector products are
commutative to get

−‖p2‖2 + c2 > −2pT1 · p2 + ‖p1‖2 − c1.

This is the algebraic expression for g2 above f1. The arguments for point g1

lying on and below hyperplane f2 are the same. 2

Polar polyhedron

We are now ready to construct the Delaunay tetrahedrization as the pro-
jection of the boundary complex of a convex polyhedron in R

4. For each
point p ∈ S, let gp = (p,−‖p‖2) be the polar point of the corresponding
hyperplane. All points gp lie on the upside-down paraboloid Π, as shown in
Figure 37. For a non-vertical hyperplane f , we consider the closed half-space
bounded from above by f . Let G be the intersection of all such half-spaces
that contain all points gp. G is a convex polyhedron in R

4. Its boundary
consists of the upper portion of the convex hull boundary plus the silhouette
extended to infinity in the −x4 direction. The Order Reversal Claim implies
the following correspondence between G and F . A hyperplane supports G
if it has non-empty intersection with the boundary and empty intersection
with the interior.

Π

Fig. 37. The boundary complex of the shaded
polyhedron projects onto the Delaunay

tetrahedrization of the set of solid points

Support Claim. A hyperplane f supports G if and only if the polar point
g = f∗ lies in the boundary of F .

Imagine exploring G by rolling the supporting hyperplane along its bound-
ary. The dual image of this picture is the polar point moving inside the
boundary of F . For each k-dimensional face of G we get a (3−k)-dimensional
face of F and vice versa. An exception is the set of vertical faces of G, which

Triangulations and meshes in computational geometry 177

do not correspond to any faces of F , except possibly to faces stipulated at in-
finity. The relationship between the two boundary complexes is the same as
that between the Delaunay tetrahedrization and the Voronoi diagram. The
isomorphism between the boundary complex of F and the Voronoi diagram
implies the isomorphism between the boundary complex of G (excluding
vertical faces) and the Delaunay tetrahedrization. Since the vertices of G
project onto points in S, it follows that the boundary complex of G projects
onto the Delaunay tetrahedrization of S. This finally implies that there are
no improper intersections between Delaunay simplices. The Delaunay tet-
rahedrization of a set S of finitely many points in general position is indeed
a simplicial complex.

Bibliographic notes

Voronoi diagrams and Delaunay triangulation are named after Georges Voro-
noi (1907/08) and Boris Delaunay (1934). The concepts themselves are older
and can be traced back to prominent mathematicians of earlier centuries,
including Friedrich Gauß and René Descartes. The connection to convex
polytopes has also been known for a long time. The combinatorial theory
of convex polytopes is a well developed field within mathematics. We refer
to the texts by Branko Grünbaum (1967) and by Günter Ziegler (1995) for
excellent sources of the accumulated knowledge in that subject.

10. Weighted distance

The correspondence between Voronoi diagrams and convex polyhedra hints
at a generalization of Voronoi and Delaunay diagrams forming a richer class
of objects. This section describes this generalization using points with real
weights. Within this larger class of diagrams we find a symmetry between
Voronoi and Delaunay diagrams absent in the smaller class of unweighted
diagrams.

Commuting diagram

Figure 38 illustrates the correspondence between Voronoi diagrams and
Delaunay tetrahedrizations in R

3 and convex polyhedra in R
4, as worked

out in Section 9. V and D are dual to each other. F is obtained from V
through linearization of distance functions, and V is formed by the projec-
tions of the boundary complex of F . F and G are polar to each other. G
is the convex hull of the points projected onto Π (extended to infinity along
the −x4-direction), and D is the projection of the boundary complex of G.

We call G an inscribed polyhedron because each vertex lies on the upside-
down paraboloid Π. Similarly, we call F a circumscribed polyhedron because
each hyperplane spanned by a 3-face is tangent to the Π. Being inscribed or

178 H. Edelsbrunner

pr
oj

ec
tio

n

pr
oj

ec
tio

n

lif
tin

g

V

F G

D
lif

tin
g

polarity

duality

Fig. 38. Relationship between Voronoi diagram, V ,
Delaunay tetrahedrization, D,

and convex polyhedra, F and G

circumscribed is a rather special property. We use weights to generalize the
concepts of Voronoi diagrams and Delaunay tetrahedrization in a way that
effectively frees the polyhedra from being inscribed or circumscribed. For
technical reasons, we still require that every vertical line intersects F in a
half-line and G either in a half-line or the empty set. This is an insubstantial
although sometimes inconvenient restriction.

Weighted points

We prepare the definition of weighted Delaunay tetrahedrization by intro-
ducing points with real weights. It is convenient to write the weight of a
point as the square of a non-negative real or a non-negative multiple of the
imaginary unit. We think of the weighted point p̂ = (p, P 2) ∈ R

3×R as the
sphere with centre p ∈ R

3 and radius P . The power or weighted distance
function of p̂ is the map πp̂ : R

3 → R defined by

πp̂(x) = ‖x− p‖2 − P 2.

It is positive for points x outside the sphere, zero for points on the sphere,
and negative for points inside the sphere. The various cases permit intuitive
geometric interpretations of weighted distance. For example, for positive P 2

and x outside the sphere, it is the square length of a tangent line segment
connecting x with a point on the sphere. This is illustrated in Figure 39.
What is it if x lies inside the sphere? In Section 2, we have seen that the set
of points with equal weighted distance from two circles is a line. Similarly,
the set of points with equal weighted distance from two spheres in R

3 is
a plane. If the two spheres intersect then the plane passes through the
intersection circle, and if the two spheres are disjoint and lie side by side
then the plane separates the two spheres.

Triangulations and meshes in computational geometry 179

xp

Fig. 39. The segment px, the tangent segment
from x to the circle, and the connecting radius

form a right-angled triangle

Orthogonality

Given two spheres or weighted points p̂ = (p, P 2) and q̂ = (q,Q2), we
generalize weighted distance to the symmetric form

πp̂,q̂ = ‖p− q‖ − P 2 −Q2.

For Q2 = 0, this is the weighted distance from q to p̂, and for P 2 = 0, this
is the weighted distance from p to q̂. We call p̂ and q̂ orthogonal if πp̂,q̂ = 0.
Indeed, if P 2, Q2 > 0 then πp̂,q̂ = 0 if and only if the two spheres meet
in a circle and the two tangent planes at every point of this circle form a
right angle. Orthogonality is the key concept in generalizing Delaunay to
weighted Delaunay tetrahedrizations. We call p̂ and q̂ further than ortho-
gonal if πp̂,q̂ > 0.

Let us contemplate for a brief moment how weights affect the lifting pro-
cess. The graph of the weighted distance function is a paraboloid whose
zero-set, π−1

p̂ (0), is the sphere p̂. We can linearize as before and get a hy-
perplane defined by

fp̂(x) = πp̂(x)− ‖x‖2

= −2pT · x+ ‖p‖2 − P 2.

We can also polarize and get

gp̂ = (p,−‖p‖2 + P 2).

Orthogonality between two spheres now translates to a point-hyperplane
incidence.

Orthogonality Claim. Spheres p̂ and q̂ are orthogonal if and only if
point gp̂ lies on the hyperplane fq̂.

Proof. The algebraic expression for gp̂ ∈ fq̂ is

−2qT · p+ ‖q‖2 −Q2 = −‖p‖2 + P 2.

180 H. Edelsbrunner

This is equivalent to

(p− q)T · (p− q)− P 2 −Q2 = 0,

which is equivalent to πp̂,q̂ = 0. 2

Weighted Delaunay tetrahedrization

Let S be a finite set of spheres. Depending on the application, we think
of an element of S as a point in R

3 or a weighted point in R
3 × R. The

weighted distance can be used to construct the weighted Voronoi diagram,
and the weighted Delaunay tetrahedrization is dual to that diagram, as usual.
Instead of going through the technical formalism of the construction, which
is pretty much the same as for unweighted points, we illustrate the concept
in Figure 40. For unweighted points, a tetrahedron belongs to the Delaunay
tetrahedrization if and only if the circumsphere passing through the four
vertices is empty. For weighted points, the circumsphere is replaced by the
orthosphere, which is the unique sphere orthogonal to all four spheres whose
centres are the vertices of the tetrahedron. Its centre is the Voronoi vertex
shared by the four Voronoi regions, and its weight is the common weighted
distance of that vertex from the four spheres. We summarize by generalizing
the Circumcircle Claim of Section 2 to three dimensions and to the weighted
case.

Fig. 40. Dashed weighted Voronoi diagram and solid
weighted Delaunay triangulation of five weighted

points in the plane. Each Voronoi vertex is the centre
of a circle orthogonal to the generating circles of the

regions that meet at that vertex. Only one such
circle is shown

Orthosphere Claim. A tetrahedron belongs to the weighted Delaunay
tetrahedrization if and only if the orthosphere of the four spheres is further
than orthogonal from all other sphere in the set.

A sphere in S is redundant if its Voronoi region is empty. By definition,
the centre of a sphere is a vertex of the weighted Delaunay triangulation

Triangulations and meshes in computational geometry 181

if and only if it is non-redundant. All extreme points are non-redundant,
which implies that the underlying space is the convex hull of S, as in the
unweighted case.

Local convexity

Recall the Delaunay lemma of Section 3, which states that a triangulation
of a finite set in R

2 is the Delaunay triangulation if and only if every one of
its edges is locally Delaunay. This result generalizes to three (and higher)
dimensions and to the weighted case. For the purpose of this discussion, we
define a tetrahedrization of S as a simplicial complex K whose underlying
space is convS and whose vertex set is a subset of S. A triangle abc in K
is locally convex if

(i) it belongs to only one tetrahedron and therefore bounds the convex
hull of S, or

(ii) it belongs to two tetrahedra, abcd and abce, and ê is further than
orthogonal from the orthosphere of abcd.

If all triangles in K are locally convex, then after lifting we get the boundary
complex of a convex polyhedron. This is consistent with the right side of
the commuting diagram in Figure 38. However, to be sure this polyhedron
is G, we also require that no lifted point lies vertically below the boundary.

Local Convexity Lemma. If VertK contains all non-redundant weighted
points and every triangle is locally convex, then K is the weighted Delaunay
tetrahedrization of S.

The proof is rather similar to that of the Delaunay lemma in Section 3
and does not need to be repeated. Similarly, we can extend the Acyclicity
Lemma of Section 2 to three (and higher) dimensions and to the weighted
case. Details should be clear and are omitted.

Bibliographic notes

Weighted Voronoi diagrams are possibly as old as unweighted ones. Some of
the earliest references appear in the context of quadratic forms, which arise
in the study of the geometry of numbers (Gruber and Lekkerkerker 1987).
These forms are naturally related to weighted as opposed to unweighted
diagrams. Examples of such work are the papers by Dirichlet (1850) and
Voronoi (1907/08). Weighted Delaunay triangulations and their generaliza-
tions to three and higher dimensions seem less natural and have a shorter
history. Nevertheless, they have already acquired at least three different
names, namely regular triangulations (Billera and Sturmfels 1992) and co-
herent triangulations (Gelfand, Kapranov and Zelevinsky 1994) besides the
one used in this paper.

182 H. Edelsbrunner

11. Flipping

The goal of this section is to generalize the idea of edge flipping to three and
higher dimensions. We begin with two classic theorems in convex geometry.
Helly’s theorem talks about the intersection structure of convex sets. It
can be proved using Radon’s theorem, which talks about partitions of finite
point sets and is directly related to flips in d dimensions. We then define
flips and discuss structural issues that arise in R

3.

Radon’s theorem

This is a result on n ≥ d + 2 points in R
d. The case of n = 4 points in R

2

is related to edge flipping in the plane.

Radon’s Theorem. Every collection S of n ≥ d + 2 points in R
d has a

partition S = A ∪̇B with convA ∩ convB 6= ∅.
Proof. Since there are more than d+1 points, they are affinely dependent.
Hence there are coefficients λi, not all zero, with

∑
λipi = 0 and

∑
λi = 0.

Let I be the set of indices i with λi > 0, and let J contain all other indices.
Note that c =

∑
i∈I λi = −∑j∈J λj > 0, and also

x =
1

c
·
∑
i∈I

λipi = − 1

c
·
∑
j∈J

λjpj .

Let A be the collection of points pi with i ∈ I and let B contain all other
points. Point x is a convex combination of the points in A as well as of the
points in B. Equivalently, x ∈ convA ∩ convB. 2

A (d+1)-dimensional simplex has d+2 vertices and a face for every subset
of the vertices. If we project its boundary complex onto R

d we get a simplex
for every subset of at most d+1 vertices. By Radon’s theorem, at least two
of these simplices have an improper intersection. This intersection comes
from projecting the two sides of the simplex boundary on top of each other.

Helly’s theorem

This is a result on n ≥ d+2 convex sets in R
d. For d = 1 it states that if every

pair of a collection of n ≥ 2 closed intervals has a non-empty intersection
then the entire collection has a non-empty common intersection. This is
true because the premise implies that the rightmost left endpoint is to the
left or equal to the leftmost right endpoint. The interval between these two
endpoints belongs to every interval in the collection.

Helly’s Theorem. If every d + 1 sets in a collection of n ≥ d + 2 closed
convex sets in R

d have a non-empty common intersection, then the entire
collection has a non-empty intersection.

Triangulations and meshes in computational geometry 183

Proof. Assume inductively that the claim holds for n − 1 closed convex
sets. For each Ci in the collection of n sets, let pi be a point in the
common intersection of the other n − 1 sets. Let S be the collection of
points pi. By Radon’s theorem, there is a partition S = A ∪̇B and a point
x ∈ convA ∩ convB. By construction, convA is contained in all sets Cj

with pj ∈ B, and symmetrically, convB is contained in all sets Ci with
pi ∈ A. Hence, x is contained in every set of the collection. 2

Flipside of a simplex

Consider the case d = 2. The projection of a 3-simplex (tetrahedron) onto
R

2 is either a convex quadrangle or a triangle. In the former case the two
diagonals cross, and in the latter case one vertex lies in the triangle spanned
by the other three. Both cases are illustrated in Figure 41. The direction of
projection defines an upper and a lower side of the tetrahedron boundary,
and the two sides meet along the silhouette. Let α = convA and β = convB
be the two faces whose projections have an improper intersection. They lie
on opposite sides, and we assume that α belongs to the upper and β to
the lower side. The quadrangle case defines an edge flip, which replaces the
projection of the upper by the projection of the lower side, or vice versa.
We also call this a 2-to-2 flip because it replaces 2 old by 2 new triangles.
The triangle case defines a new type of flip, which we refer to as a 1-to-3 or
a 3-to-1 flip depending on whether a new vertex is added or an old vertex
is removed.

Fig. 41. The two generic projections
of a tetrahedron onto the plane

How do these considerations generalize to the case d = 3? As illustrated in
Figure 42, the projection of a 4-simplex onto R

3 is either a double pyramid
or a tetrahedron. In the double pyramid case, α is an edge and β is a
triangle. There are three tetrahedra that share α and they form the upper
side of the 4-simplex. The remaining two tetrahedra share β and form the
lower side. The 3-to-2 flip replaces the projection of the upper side by the
projection of the lower side, and the 2-to-3 flip does it the other way round.
In the tetrahedron case, α is one vertex and β is the tetrahedron spanned
by the other four vertices. The 1-to-4 flip adds α, effectively replacing β by
four tetrahedra, and the 4-to-1 flip removes α.

184 H. Edelsbrunner

Fig. 42. The two generic projections
of a 4-simplex onto 3-dimensional space

Transformability

In using flips to construct a Delaunay tetrahedrization in R
3, we encounter

cases where we would like to flip but we cannot. This happens only for 2-to-3
flips. Let abcd and bcde share the triangle bcd. If the edge ae crosses bcd we
can replace abcd, bcde by baec, caed, daeb, which is a 2-to-3 flip. However, if
the edge ae misses bcd, as illustrated in Figure 43 where ae passes behind
bd, we cannot add ae because it might cross other triangles in the current
tetrahedrization. In this case, the union of the two tetrahedra is non-convex.
Assume without loss of generality that bd is the non-convex edge. There are
two cases. If bd belongs to only three tetrahedra then the third one is
abde, and we can replace abdc, cbde, ebda by bace, aced. This is a 3-to-2 flip.
However, if bd belongs to four or more tetrahedra then we are stuck and
cannot remove the triangle bcd. This is the non-transformable case.

a

dc

b

e

Fig. 43. The edge ae does not pass through
the triangle bcd but rather behind the edge bd

The reason for studying flips is of course the interest in an algorithm that
constructs a weighted Delaunay tetrahedrization by flipping. The occurrence
of non-transformable cases does not imply that all hope is lost. It might still
be possible to flip elsewhere in a way that resolves non-transformable cases
by changing their local neighbourhood. But this requires further analysis.

Triangulations and meshes in computational geometry 185

Bibliographic notes

Radon’s theorem is a by-product of the attempt by Johann Radon (1921) to
prove Helly’s theorem, communicated to him by Eduard Helly (1923). The
two theorems are equivalent and form a cornerstone of modern convex geo-
metry. Helly was missing as a prisoner of war in Russia, so Radon published
his theorem and proof. After returning from Russia, Helly published his
theorem and his own proof, which is inductive in the size of the collection
and the dimension. Years later, Helly generalized his theorem to a topo-
logical setting where convexity is replaced by requirements of connectivity
(Helly 1930). The concept of an edge flip was generalized to three and higher
dimensions by Lawson (1986) without, however, realizing the connection to
Radon’s theorem.

12. Incremental algorithm

This section generalizes the algorithm of Section 4 to three dimensions and
to the weighted case. The algorithm is incremental and adds a point in
a sequence of flips. We describe the algorithm, prove its correctness, and
discuss its running time.

Algorithm

Let S be a finite set of weighted points in R
3. We denote the points

by p̂1, p̂2, . . . , p̂n and assume they are in general position. To reduce the
number of cases, we let wxyz be a sufficiently large tetrahedron. In par-
ticular, we assume wxyz contains all points of S in its interior. Define
Si = {w, x, y, z, p̂1, p̂2, . . . , p̂i} for 0 ≤ i ≤ n, and let Di be the weighted
Delaunay tetrahedrization of Si. The algorithm starts with D0 and adds
the weighted points in order. Adding p̂1 is done in a sequence of flips.

for i = 1 to n do

find pqrs ∈ Di−1 that contains pi;
if p̂i is non-redundant among p̂, q̂, r̂, ŝ then

add p̂i with a 1-to-4 flip
endif;
while ∃ triangle bcd not locally convex do

flip bcd
endwhile

endfor.

The algorithm maintains a tetrahedrization, which we denote as K. Some-
times, K is a weighted Delaunay tetrahedrization of a subset of the points,
but often it is not. Consider flipping the triangle bcd in K. Let abcd and bcde
be the two tetrahedra that share bcd. If their union is convex, then flipping

186 H. Edelsbrunner

bcd means a 2-to-3 flip that replaces bcd by edge ae together with triangles
aeb, aec, aed. Otherwise, we consider the subcomplex induced by a, b, c, d, e.
It consists of the simplices in K spanned by subsets of the five points. If
the underlying space of the induced subcomplex is non-convex then bcd can-
not be flipped. If the underlying space is convex then it is either a double
pyramid or a tetrahedron. In the former case, flipping means a 3-to-2 flip.
In the latter case, flipping means a 4-to-1 flip, which effectively removes a
vertex. The various types of flips are illustrated in Figure 44.

Fig. 44. To the left, a 1-to-4 or a 4-to-1 flip depending
on whether the hollow vertex is added or removed.
To the right, a 2-to-3 or a 3-to-2 flip depending on

whether the dotted edge is added or removed

Stack of triangles

Flipping is done in a sequence controlled by a stack. At any moment, the
stack contains all triangles in the link of pi that are not locally convex. It
may also contain other triangles in the link, but it contains each triangle at
most once. Initially, the stack consists of the four triangles of pqrs. Flipping
continues until the stack is empty.

while stack is non-empty do

pop bcd from stack;
if bcd ∈ K and bcd is not locally convex

and bcd is transformable then

apply a 2-to-3, 3-to-2, or 4-to-1 flip;
push new link triangles on stack

endif

endwhile.

Why can we restrict our attention to triangles in the link of pi? Outside the
link, K is equal to Di−1, hence all triangles are locally convex. A triangle
inside the link connects pi with an edge cd in the link. Let xpicd and picdy
be the two tetrahedra sharing picd. If their union is convex, we can remove
picd by a 2-to-3 flip. This creates a new tetrahedron acde not incident to
pi, which contradicts that Di−1 is a weighted Delaunay tetrahedrization.

Triangulations and meshes in computational geometry 187

If their union is non-convex, the triangles xcd and cdy in the link are also
not locally convex.

Correctness

Let K be the tetrahedrization at some moment in time after adding p̂i when
it is not yet the weighted Delaunay tetrahedrization of Si. It suffices to
show that K has at least one link triangle that is not locally convex and
transformable. To get a contradiction, we suppose all triangles that are
not locally convex are non-transformable. Let L be the set of tetrahedra in
K−St pi that have at least one triangle in the link. These tetrahedra form a
spiky sphere around pi, not unlike the spiky circle in Figure 45. Let L′ ⊆ L
contain all tetrahedra whose triangles in the link are not locally convex. By
assumption, L′ 6= ∅. For each tetrahedron in L, consider the orthosphere
ẑ and the weighted distance πp̂i,ẑ. Let abcd ∈ L be the tetrahedron whose
orthosphere minimizes that function. We have abcd ∈ L′, or equivalently
πp̂i,ẑ < 0, for else the triangle bcd in the link would be locally convex, and
so would every other link triangle.

pi

c

a

bd

Fig. 45. The bold edges belong to the link of pi
and the shaded triangles belong to L

We argue that bcd is transformable. To get a contradiction assume it is
not. Let bd be a non-convex edge of the union of abcd and bcdpi, and let
abdx be the tetrahedron on the other side of abd. If bd is the only non-convex
edge then x 6= pi, for else bcd would be transformable. Otherwise, there is
another non-convex edge, say bc. Let abcy be the tetrahedron on the other
side of abc. If x = y = pi we again have a contradiction because this would
imply that bcd is transformable. We may therefore assume that x 6= pi.
Equivalently, abd is not in the link of p̂i. Consider a half-line that starts at
pi and passes through an interior point of abd. After crossing the link, the
half-line goes through a tetrahedron of L before it encounters abcd. This
is illustrated in Figure 45. Outside the link, we have a genuine weighted
Delaunay tetrahedrization, namely a portion of Di−1. For tetrahedra in
Di−1, the weighted distance of p̂i from their orthospheres increases along

188 H. Edelsbrunner

the half-line, which contradicts the minimality assumption in the choice of
abcd. This finally proves that flipping continues until Di is reached.

Number of flips

To upper-bound the number of flips in the worst case, we interpret that
algorithm as gluing 4-simplices to a three-dimensional surface consisting of
tetrahedra in R

4. Each flip corresponds to a 4-simplex. It either removes
or introduces one or four edges. Once an edge is removed it cannot be
introduced again. This implies that the total number of flips is less than
2
(
n
2

)
< n2. Modulo implementation details, we thus have an algorithm that

constructs the Delaunay tetrahedrization of n points in R
3 in O(n2) time.

The size of the final Delaunay tetrahedrization is therefore at most some
constant times n2.

There are sets of n points in R
3 with at least some constant times n2

Delaunay tetrahedra. Take, for example, two skew lines and place n
2 un-

weighted points on each line, as shown in Figure 46. Consider two contiguous
point on one line together with two contiguous points on the other line. The
sphere passing through the four points is empty, which implies that the four
points span a Delaunay tetrahedron. The total number of such tetrahedra

is roughly n2

4 . However, for point sets that seem to occur in practice, the
number of Delaunay tetrahedra is typically less than some constant times
n. Examples of such sets are dense packing of spheres common in molecu-
lar modelling, and well-spaced sets as produced by three-dimensional mesh
generation software.

Fig. 46. A tetrahedral mesh whose edge skeleton
contains a complete bipartite graph

Expected running time

It is a good idea to first compute a random permutation of the points so that
the construction proceeds in a random order. However, because the size of
the tetrahedrization can vary between linearly and quadratically many sim-
plices, the analysis is more involved than in two dimensions. We cannot
even claim that the expected running time is at most log2 n times the size of

Triangulations and meshes in computational geometry 189

the final tetrahedrization. Indeed, this is false because there exist point sets
with linear size Delaunay tetrahedrizations that reach quadratic intermedi-
ate size with positive constant probability. Nevertheless, such a claim holds
if we further relativize the statement by drawing points from a fixed dis-
tribution. Suppose the expected size of the Delaunay tetrahedrization of k
points chosen randomly from the distribution is O(f(k)). If f(k) = Ω(k1+ε),
for some constant ε > 0, then the expected running time is O(f(n)), and
otherwise it is O(f(n) log n). The argument is similar to the one presented
in Section 4 and details are omitted.

Bibliographic notes

Algorithms that construct a Delaunay tetrahedrization in R
3 through flips

have first been considered by Barry Joe. In the paper Joe (1989) he gives an
example where the non-transformable cases form a deadlock situation and
flipping does not lead to the Delaunay tetrahedrization. In Joe (1991) he
shows that flipping succeeds if the points are added one at a time. The proof
of Joe’s result in this section is taken from Edelsbrunner and Shah (1996),
where the same is shown for weighted Delaunay tetrahedrization in R

d.

13. Meshing polyhedra

In this paper, meshing a spatial domain means decomposing a polyhedron
into tetrahedra that form a simplicial complex. This section introduces
polyhedra and studies the problem of how many tetrahedra are needed to
mesh them.

Polyhedra and faces

A polyhedron is the union of convex polyhedra, P =
⋃
i∈I
⋂
Hi, where I is a

finite index set and each Hi is a finite set of closed half-spaces. For example
the polyhedron in Figure 47 can be specified as the union of four convex
polyhedra. As we can see, faces are not necessarily simply connected. We
use a definition that permits faces even to be disconnected.

Fig. 47. A non-convex polyhedron

190 H. Edelsbrunner

Let b be the open ball with unit radius centred at the origin of R
3. For

a point x we consider a sufficiently small neighbourhood, Nε(x) = (x + ε ·
b) ∩ P . The face figure of x is the enlarged version of this neighbourhood
within the polyhedron, x+

⋃
λ>0 λ ·(Nε(x)−x). A face of P is the closure of

a maximal collection of points with identical face figure. To distinguish the
faces of P from the edges and triangles of the Delaunay tetrahedrization to
be constructed, we call 1- and 2-faces of P segments and facets. Observe that
the polyhedron in Figure 47 has 24 vertices, 30 segments, 11 facets, and two
3-faces, namely the inside with face figure R

3 and the outside with empty
face figure. Six of the segments and three of the facets are non-connected.
Two of the facets are connected but not simply connected, namely the front
and the back facets.

Tetrahedrizations

A tetrahedrization of P is a simplicial complex K whose simplices decom-
pose P . Since simplicial complexes are finite by definition, only bounded
polyhedra have tetrahedrizations. A tetrahedrization of P triangulates every
facet and every segment by a subcomplex each. Every vertex of P is neces-
sarily also a vertex of K.

We will see shortly that every bounded polyhedron has a tetrahedriza-
tion. Interestingly, there are polyhedra whose tetrahedrizations have neces-
sarily more vertices than the polyhedra. The smallest such example is the
Schönhardt polyhedron shown in Figure 48. It can be obtained from a trian-
gular prism by a slight rotation of one triangular facet relative to the other.
The six vertices of the polyhedron span

(
6
4

)
= 15 tetrahedra, which we clas-

sify into three types exemplified by abcA, abAB, bcCA. All three tetrahedra
share bA as an edge. But this edge lies outside the Schönhardt polyhedron,
which implies that none of the 15 tetrahedra is contained in the polyhedron.
The Schönhardt polyhedron can therefore not be tetrahedrized using tetra-
hedra spanned by its vertices. There are of course other tetrahedrizations.
The simplest uses a vertex z in the centre and cones from z to the 6 vertices,
12 edges, 8 triangles in the boundary.

Fencing off

We give a constructive proof that every polyhedron P has a tetrahedriz-
ation. For simplicity we assume that P is everywhere three-dimensional.
Equivalently, P is the closure of its interior, P = cl intP . It is convenient to
place P in space such that no facet lies in a vertical plane and no segment
is contained in a vertical line. Call two points x, y ∈ P vertically visible if
x, y lie on a common vertical line and the edge xy is contained in P . The
fence of a segment consists of all points x ∈ P vertically visible from some

Triangulations and meshes in computational geometry 191

C

a
b

B
A

c

Fig. 48. The Schönhardt polyhedron.
The edges aB, bC, cA are non-convex

point y of the segment. The tetrahedrization is constructed in three steps,
the first of which is illustrated in Figure 49.

Step 1. Erect the fence of each segment. The fences decompose P into
vertical cylinders, each bounded by a top and a bottom facet and a
circle of fence pieces called walls.

Step 2. Triangulate the bottom facet of every cylinder and erect fences
from the new segments, effectively decomposing P into triangular cyl-
inders.

Step 3. Decompose each wall into triangles and finally tetrahedrize each
cylinder by constructing cones from an interior point to the boundary.

b

a

Fig. 49. The fence of the segment ab consists
of five walls, each a triangle or a quadrangle

Upper bound

We analyse the tetrahedrization obtained by erecting fences and prove that
the final number of tetrahedra is at most some constant times the square of
the number of segments.

Upper Bound Claim. The three steps tetrahedrize a bounded polyhed-
ron with m segments using fewer than 28m2 tetrahedra.

192 H. Edelsbrunner

Proof. Fences erected in Step 1 may meet in vertical edges. Each inter-
section corresponds to a crossing between vertical projections of segments.
The total number of crossings is at most

(
m
2

)
. Each segment creates a fence,

and each crossing involving this segment may cut one wall of the fence into
two. The total number of walls is therefore no more than m + 2

(
m
2

)
= m2.

A cylinder bounded by k walls is decomposed into k−2 triangular cylinders
separated from each other by k − 3 new walls. Step 2 thus increases the
total number of walls to less than 3m2. The total number of cylinders at this
stage is less than 2m2. Each wall is a triangle or a quadrangle, and it may be
divided into two by the piece of the segment that defines it. Step 2 there-
fore triagulates each wall using four or fewer triangles, and it tetrahedrizes
each cylinder using 14 or fewer tetrahedra. The final tetrahedrization thus
contains fewer than 28m2 tetrahedra. 2

Saddle surface

We prepare a matching lower bound by studying the hyperbolic paraboloid
specified by the equation x3 = x1 · x2. Figure 50 illustrates the paraboloid
by showing its intersection with the vertical planes ±x1±x2 = 1. A general

x

3

2

x

x

1

Fig. 50. Hyperbolic paraboloid indicated
through its intersection with vertical walls

line in the x1x2-plane is specified by ax1 + bx2 + c = 0. To determine the
intersection of the paraboloid with the vertical plane through that line, we
can either express x1 in terms of x2 or vice versa,

x3 = − b

a
x2

2 −
c

a
x2,

x3 = −a

b
x2

2 −
c

b
x2.

For a · b 6= 0 we get a parabola. For a = 0 we get a line for every value
of c

b , and we sample this family at integer values. Similarly, we sample the
1-parameter family of lines we get for b = 0 at integer values of c

a . Figure 51
shows a small portion of the two families in top view. If two points x and
y lie on the paraboloid then the segment between them lies on the surface

Triangulations and meshes in computational geometry 193

if and only if the vertical projections of x, y onto the x1x2-plane line on a
common horizontal or vertical line. If the line has positive slope then the
segment lies below the surface, and if the line has negative slope then it lies
above the surface.

x1

x2

Fig. 51. Top view of hyperbolic paraboloid. We see
samples of the two ruling families of lines and dotted

edges connecting points sampled on the surface

Lower bound construction

We build a polyhedron Q out of a cube by cutting deep wedges, each close to
a line of the two ruling families. The construction is illustrated in Figure 52.
Assuming we have n cuts from the top and n from the bottom, we have
m = 14n+ 8 segments forming the polyhedron.

Fig. 52. Polyhedron Q with two families of cuts
almost meeting along the saddle surface

Lower Bound Claim. Every tetrahedrization of Q consists of at least
(n+ 1)2 tetrahedra.

Proof. Consider the checkerboard produced by the 2n + 4 lines on the
saddle surface that mark the ends of the 2n cuts and the intersection with
the boundary of the cube. Choose a point in each square of the checkerboard
producing the slightly tilted square grid pattern of Figure 51. The edges

194 H. Edelsbrunner

connecting any two points intersect at least one of the wedges, provided
the sharp ends of the wedges reach sufficiently close to the saddle surface.
It follows that in any tetrahedrization of Q, the (n + 1)2 points lie inside
pairwise different tetrahedra. 2

Bibliographic notes

The definition of a polyhedron as the union of intersections of closed half-
spaces is taken from Hadwiger (1957). The definition of a face is taken
from Edelsbrunner (1995) and should be contrasted with that suggestion in
Grünbaum and Shephard (1994). The Schönhardt polyhedron was named
after E. Schönhardt who described the polyhedron in 1928 (Schönhardt
1928). The same construction was mentioned 17 years earlier in a paper
by Lennes (1911). Ruppert and Seidel (1992) build on this construction,
and show that deciding whether or not a polyhedron can be tetrahedrized
without adding new vertices is NP-complete. The quadratic upper and
lower bounds for tetrahedrizing polyhedra are taken from a paper by Bern-
ard Chazelle (1984).

14. Tetrahedral shape

This section looks at the various shapes tetrahedra can assume. For the
time being, good shape quality is defined as having a small circumradius
over shortest edge length ratio. We will see later that meshes of tetrahedra
with small ratio also have nice combinatorial properties, such as constant
size vertex stars.

Classifying tetrahedra

The classification of tetrahedra into shape types is a fuzzy undertaking. We
normalize by scaling tetrahedra to unit diameter. A normalized tetrahedron
has small volume either because its vertices are close to a line, or, if that is
not the case, its vertices are close to a plane. In the first case, the tetrahedron
is skinny, and we distinguish five types depending on how its vertices cluster
along the line. Up to symmetry, the possibilities are 1-1-1-1, 1-1-2, 1-2-1,
1-3, 2-2, as shown from left to right in Figure 53. A flat tetrahedron has
small volume but is not skinny. We have four types depending on whether
two vertices are close to each other, three vertices lie close to a line, the
orthogonal projection of the tetrahedron onto the close plane is a triangle,
or the projection is a quadrangle. All four types are shown from left to right
in Figure 54.

Circumradius over shortest edge length

A tetrahedron abcd has a unique circumsphere. Let R = R(abcd) be that
radius and L = L(abcd) the length of the shortest edge. We measure the

Triangulations and meshes in computational geometry 195

Fig. 53. Five fuzzy types of skinny tetrahedra

sliver

Fig. 54. Four fuzzy types of flat tetrahedra

quality of the tetrahedron shape by taking the ratio, that is,

% = %(abcd) =
R

L
.

We also define % for triangles, taking the radius of the circumcircle over the
length of the shortest edge. Observe that the ratio of a tetrahedron is always
larger than or equal to the ratio of each of its triangles.

A triangle abc minimizes the ratio if and only if it is equilateral, in which
case the circumcentre is also the barycentre,

y =
1

3
· (a+ b+ c) =

2

3
· x+

1

3
· c,

where x = 1
2 · (a + b). Normalization implies that the three edges have

length 1. The ratio is therefore equal to the circumradius, which is

‖c− y‖ =
2

3
· ‖c− x‖ =

2

3
·
√

1− 1

4

=

√
3

3
= 0.577 . . .

A tetrahedron abcd minimizes the ratio if and only if it is regular, in which
case the circumcentre is again the barycentre,

z =
1

4
· (a+ b+ c+ d) =

3

4
· y +

1

4
· d.

196 H. Edelsbrunner

Normalization implies that the six edges have length 1. The ratio is therefore
equal to the circumradius, which is

‖d− z‖ =
3

4
· ‖d− y‖ =

3

4
·
√

1− 3

9

=

√
6

4
= 0.612 . . .

Both calculations are illustrated in Figure 55.

z

d

c

b

a

x
y

Fig. 55. A regular tetrahedron and the barycentres
of an edge, a triangle, the tetrahedron

A skinny triangle has small area. It has either a short edge or a large
circumradius. In either case, its ratio is large. A skinny tetrahedron has
skinny triangles, hence its ratio is large. A flat triangle that is not a sliver
has either a short edge or a large circumradius and thus a large ratio. The
only remaining small volume tetrahedron is the sliver, and it can have % as

small as
√

2
2 = 0.707 . . . or even a tiny amount smaller.

Ratio property

A mesh of tetrahedra has the ratio property for %0 if % ≤ %0 for all tetrahedra.
We assume that every triangle in the mesh is the face of a tetrahedron in
the mesh. It follows that % ≤ %0 also for every triangle. We prove two
elementary facts about edge lengths in a mesh K that has the ratio property
for a constant %0.

Claim A. If abc is a triangle in K then

1

2%0
· ‖a− b‖ ≤ ‖a− c‖ ≤ 2%0 · ‖a− b‖.

Proof. The length of an edge is at most twice the circumradius, ‖a− b‖ ≤
2Y . By assumption, ‖a− b‖ ≥ Y/%0. The same inequalities hold for ‖a− c‖,
which implies the claim. 2

Triangulations and meshes in computational geometry 197

Next we show that, if K has the ratio property and it is a Delaunay
tetrahedrization, then edges that share a common endpoint and form a small
angle cannot have very different lengths. For this to hold, it is not necessary
that the two edges belong to a common triangle. Define

η0 = arctan 2

(
%0 −

√
%2
0 − 1/4

)
.

Since %0 is a constant, so is η0.

Claim B. If the angle between ab and ap is less than η0 then

1

2
· ‖a− b‖ < ‖a− p‖ < 2 · ‖a− b‖.

Proof. Consider the circumsphere of a tetrahedron that contains ab as an
edge, and let ŷ = (y, Y 2) be the circle in which the plane passing through
a, b, p intersects the sphere. We use Figure 56 as an illustration throughout

a
x

v

y
b

p

Fig. 56. Section through a circumsphere
of a Delaunay tetrahedron with edge ab

the proof. Let v be the midpoint of ab, and let x be the point on the
circle such that y, v, x lie in this sequence on a common line. We have
Y ≤ %0 · ‖a− b‖ by assumption. The distance between x and v is

‖x− v‖ = Y −
√
Y 2 − ‖a− b‖2/4

≥
(
%0 −

√
%2
0 − 1/4

)
· ‖a− b‖,

because the difference between Y and
√
Y 2 − C decreases with increasing

Y . The angle between ab and ax is

∠bax = arctan
2‖x− v‖
‖a− b‖

≥ arctan 2

(
%0 −

√
%2
0 − 1/4

)
= η0.

198 H. Edelsbrunner

The claimed lower bound follows because the circle forces ap to be at least
as long as ax, which is longer than half of ab. The claimed upper bound on
the length of ap follows by a symmetric argument that reverses the roles of
b and p. 2

Length variation

We use Claims A and B to show that the length variation of edges with
a common endpoint a in K is bounded by some constant. As before, we
assume K has the ratio property and is a Delaunay tetrahedrization. Define
m0 = 2/(1− cos η0

4) and ν0 = 22m0−1 · %m0−1
0 . Since %0 and η0 are constants,

so are m0 and ν0.

Length Variation Lemma. If ab, ap are edges in K then

1

ν0
· ‖a− b‖ < ‖a− p‖ < ν0 · ‖a− b‖.

Proof. Let Σ be the sphere of directions around a. We form a maximal
packing of circular caps, each with angle η0/4. This means if y is the centre
and x a boundary point of a cap then 4∠xay = η0. The area of each cap is
(1− cos η0

4)/2 times the area of Σ, which implies that there are at most m0

caps.
By increasing the caps to radius η0/2 we change the maximal packing

into a covering of Σ. For each edge ab in the star of a, let b′ ∈ Σ be the
radial projection of b. Similarly, for each triangle abc consider the arc on
Σ that is the radial projection of bc. The points and arcs form a planar
graph. Let ab be the longest and ap the shortest edge in the star of a. We
walk in the graph from b′ to p′. This path leads from cap to cap, and we
record the sequence ignoring detours that return to previously visited caps.
The sequence consists of at most m0 caps. Let us track the edge length
during the walk. As long as we stay within a cap, Claim B implies the
length decreases by less than a factor 1

2 . If we step from one cap to the

next, Claim A implies the length decreases by at most a factor 1
2%0

. Hence

‖a− p‖ > 1
ν0
· ‖a− b‖. The upper bound follows by a symmetric argument

that exchanges b and p. 2

Constant degree

A straightforward volume argument together with the Length Variation
Lemma implies that each vertex in K belongs to at most some constant
number of edges. Define δ0 = (2ν2

0 + 1)3, which is a constant.

Degree Lemma. Every vertex a in K belongs to at most δ0 edges.

Triangulations and meshes in computational geometry 199

Proof. Let ab be the longest and ap the shortest edge in the star of a.
Assume without loss of generality that ‖a− p‖ = 1. Let c be a neighbour
of a and let d be a neighbour of c. We have ‖a− c‖ ≥ 1 by assumption and
‖c− d‖ ≥ 1

ν0
by the Length Variation Lemma. For each neighbour c of a

let Γc be the open ball with centre c and radius 1
2ν0

. The balls are pairwise

disjoint and fit inside the ball Γ with centre a and radius ‖a− b‖+ 1
2ν0

. The
volume of Γ is

vol Γ =
4π

3

(
‖a− b‖+

1

2ν0

)3

≤ 4π

3

(
2ν2

0 + 1

2ν0

)3

= (2ν2
0 + 1)3 · vol Γc.

In words, at most δ0 = (2ν2
0 + 1)3 neighbour balls fit into Γ. This implies

that δ0 is an upper bound on the number of neighbours of a. 2

The constant δ0 in the Degree Lemma is miserably large. The main reason
is that the constant ν0 in the Length Variation Lemma is miserably large. It
would be nice to find a possibly more direct proof of that lemma and bring
the constant down to reasonable size.

Bibliographic notes

The idea of measuring the quality of a tetrahedron by its circumradius over
shortest edge length ratio is due to Miller and co-authors (Miller, Talmor,
Teng and Walkington 1995). The proofs of the Length Variation and Degree
Lemmas are taken from the same source. Further results on meshes of
tetrahedra that have the ratio property can be found in the doctoral thesis
by Talmor (1997).

15. Delaunay refinement

This section generalizes the Delaunay refinement algorithm of Section 7 from
two to three dimensions. The additional dimension complicates matters. In
particular, special care must be taken to avoid infinite loops bouncing back
and forth between refining segments and facets of the input polyhedron.

Refinement algorithm

For technical reasons, we restrict ourselves to bounded polyhedra P without
interior angles smaller than π

2 . The condition applies to angles between two
segments, between a segment and a facet, and between two facets. The
polyhedron in Figure 47 satisfies the condition, but the polyhedron in Fig-
ure 48 does not. The goal is to construct a Delaunay tetrahedrization D

200 H. Edelsbrunner

with a subcomplex K ⊆ D that subdivides P and has the ratio property for
a constant %0. The first step of the algorithm computes D as the Delaunay
tetrahedrization of the set of vertices of P . Unless we are lucky, there will be
segments that are not covered by edges of D, and there will be facets that
are not covered by triangles of D. To recover these segments and facets, we
add new points and update the Delaunay tetrahedrization using the incre-
mental algorithm of Section 12. The points are added using the three rules
given below.

We need some definitions. A segment of P is decomposed into subsegments
by vertices of the Delaunay tetrahedrization that lie on the segment, and a
facet is decomposed into (triangular) subfacets by the Delaunay triangula-
tion of the vertices on the facet and its boundary. A vertex encroaches upon
a subsegment if it is enclosed by the diameter sphere of that subsegment,
and it encroaches upon a subfacet if it is enclosed by the equator sphere of
that subfacet. Both spheres are the smallest that pass through all vertices
of the subsegment and the subfacet.

Rule 1. If a subsegment is encroached upon, we split it by adding the mid-
point as a new vertex to the Delaunay tetrahedrization. The new sub-
segments may or may not be encroached upon, and splitting continues
until none of the subsegments is encroached upon.

Rule 2. If a subfacet is encroached upon, we split it by adding the circum-
centre x as a new vertex to the Delaunay tetrahedrization. However,
if x encroaches upon one or more subsegments then we do not add x
and instead split the subsegments.

Rule 3. If a tetrahedron inside P has circumradius over shortest edge
length ratio R/L > %0 then we split the tetrahedron by adding the
circumcentre x as a new vertex to the Delaunay tetrahedrization. How-
ever, if x encroaches upon any subsegments or subfacets, we do not add
x and instead split the subsegments and subfacets.

Rule 1 takes priority over Rule 2, and Rule 2 takes priority over Rule 3.
At the time we add a point on a facet, the prioritization guarantees that
the boundary segments of the facet are subdivided by edges of the Delaunay
tetrahedrization. Similarly, at the time we add a point in the interior of P ,
the boundary of P is subdivided by triangles in the Delaunay tetrahedriza-
tion. A point considered for addition to the Delaunay tetrahedrization has
a type, which is the number of the rule that considers it or equivalently the
dimension of the simplex it splits. Points of type 1 split subsegments and
are always added once they are considered. Points of type 2 and 3 may be
added or rejected.

Triangulations and meshes in computational geometry 201

Local density

Just as in two dimensions, the local feature size is crucial to understanding
the Delaunay refinement algorithm. It is the function f : R

3 → R with f(x)
the radius of the smallest closed ball with centre x that intersects at least
two disjoint faces of P . Note that f is bounded away from zero by some
positive constant. It is easy to show that f satisfies the Lipschitz condition

f(x) ≤ f(y) + ‖x− y‖.
This implies that f is continuous over R

3, but more than that, the condition
says that f varies only slowly with x.

The local feature size is related to the insertion radius rx of a point x,
which is the length of the shortest Delaunay edge with endpoint x imme-
diately after adding x. If x is a vertex of P then rx is the distance to the
nearest other vertex of P . If x is type 1 or 2 then rx is the distance to
the nearest encroaching vertex. If that encroaching vertex does not exist
because it was rejected, then rx is either half the length of the subsegment
if x is type 1, or it is the circumradius of the subfacet if x is type 2. Finally,
rx is the circumradius of the tetrahedron it splits if x is type 3. We also
define the insertion radius for a point that is considered for addition but
rejected, because it encroaches upon subsegments or subfacets. This is done
by hypothetically adding the point and taking the length of the shortest
edge in the hypothetical star.

Radii and parents

Points are added in a sequence, and for each new point there are predecessors
that we can make responsible for the addition. If x is type 1 or 2 then we
define the responsible parent p = px as the encroaching point that triggers
the event. The point p may be a Delaunay vertex or a rejected circumcentre.
If there are several encroaching points then p is the one closest to x. If x
is type 3 then p is the most recently added endpoint of the shortest edge of
the tetrahedron x splits.

Radius Claim. Let x be a vertex of D and p its parent, if it exists. Then
rx ≥ f(x) or rx ≥ c · rp, where c = 1/

√
2 if x is type 1 or 2 and c = %0 if x

is type 3.

Proof. If x is a vertex of P then f(x) is less than or equal to the distance
to the nearest other vertex. This distance is rx ≥ f(x). For the rest of the
proof assume x is not a vertex of P . It therefore has a parent p = px. First
consider the case where p is a vertex of P . If x is type 1 or 2, it lies in a
segment or facet of P , and p is not contained in that segment or facet. Hence
rx = ‖x− p‖ ≥ f(x). If x is type 3 then the tetrahedron split by x has at
least two vertices in P . Hence rx = ‖x− p‖ ≥ f(x) as before. Secondly,

202 H. Edelsbrunner

consider the case where p is not a vertex of P . If x is type 1 or 2 then p
was rejected for triggering the insertion of x. Since p encroaches upon the
subsegment or subfacet split by x, its distance to the closest vertex of that
subsegment or subfacet is at most

√
2 times the distance of x from that same

vertex. Hence rx ≥ rp/
√

2. Finally, if x is type 3 then rp ≤ L, where L is
the length of the shortest edge of the tetrahedron split by x. The algorithm
splits that tetrahedron only if R > L%0. Hence rx = R > L%0 ≥ %0rp. 2

Termination

The Radius Claim limits how quickly the insertion radius can decrease. We
aim at choosing the only independent constant, which is %0, such that the
insertion radii are bounded from below by a positive constant. Once this
is achieved, we can prove termination of the algorithm using a standard
packing argument. Figure 57 illustrates the possible parent–child relations
between the three types of points added by the algorithm. We follow an
arc of the digraph whenever the insertion radius of a point x is less than
f(x). The arc is labelled by the smallest possible factor relating the insertion
radius of x to that of its parent. Note that there is no arc from type 1 to
type 2 and there are no loops from type 1 back to type 1 and from type 2
back to type 2. This is because the angle constraint on the input polyhedron
prevents parent–child relations for points on segments and facets with non-
empty intersection. If there is a relation between points on segments and
facets with empty intersection then rx ≥ f(x) and there is no need to follow
an arc in the digraph.

type 3

type 2

type 1

1/ 2

1/ 2

ρ

1/ 2

0

Fig. 57. The directed arcs indicate possible
parent–child relations, and their labels give
the worst case factors relating insertion radii

Observe that every cycle in the digraph contains the arc labelled %0 leading
into type 3. We choose %0 ≥ 2 to guarantee that the products of arc labels
for all cycles are 1 or larger. The smallest product of any path in the digraph
is therefore 1

2 . In cases where rx is not at least f(x), there exist ancestors q

Triangulations and meshes in computational geometry 203

with rx ≥ rq/2 and rq ≥ f(q). Since f(q) is bounded away from zero by some
positive constant, we conclude that the insertion radii cannot get arbitrarily
small. It follows that the Delaunay refinement algorithm terminates. For
%0 < 2 there are cases where the algorithm does not terminate.

Graded meshes

With little additional effort we can show that for %0 strictly larger than 2,
insertion radii are directly related to local feature size, and not just indirectly
through chains of ancestors. We begin with a relation between the local
feature size over insertion radius ratio of a vertex and of its parent.

Ratio Claim. Let x be a Delaunay vertex with parent p and assume
rx ≥ c · rp. Then

f(x)

rx
≤ 1 +

f(p)

c · rp .

Proof. We have rx = ‖x− p‖ if p is a Delaunay vertex and rx ≥ ‖x− p‖ if p
is a rejected midpoint or circumcentre. Starting with the Lipschitz condition
we get

f(x) ≤ f(p) + ‖x− p‖
≤ f(p)

c · rp · rx + rx,

and the result follows after dividing by rx. 2

To prepare the next step we assume %0 > 2 and define constants

C1 =
(3 +

√
2) · %0

%0 − 2
,

C2 =
(1 +

√
2) · %0 +

√
2

%0 − 2
,

C3 =
%0 + 1 +

√
2

%0 − 2
.

Note that C1 > C2 > C3 > 1.

Invariant. If x is a type i vertex in the Delaunay tetrahedrization, for
1 ≤ i ≤ 3, then rx ≥ f(x)/Ci.

Proof. If the parent p of x is a vertex of the input polyhedron P then
rx ≥ f(x) and we are done. Otherwise, assume inductively that the claimed
inequality holds for vertex p. We finish the proof by case analysis. If x is
type 3 then c = %0 and rx ≥ %0 · rp by the Radius Claim. By induction we

204 H. Edelsbrunner

get f(p) ≤ C1rp, no matter what type p is. Using the Ratio Claim we get

f(x)

rx
≤ 1 +

C1

%0
= C3.

If x is type 2 then c = 1√
2
. We have rx ≥ f(x) unless p is type 3, and

therefore f(p) ≤ C3rp by inductive assumption. Then rx ≥ rp/
√

2 by the
Radius Claim, and

f(x)

rx
≤ 1 +

√
2 · C3 = C2

by the Ratio Claim. If x is type 1 then c = 1√
2
. We have rx ≥ f(x) unless

p is type 2 or 3, and therefore f(x) ≤ C2rp by inductive assumption. Then

rx ≤ 1 + rp/
√

2 by the Radius Claim, and

f(x)

rx
≤ 1 +

√
2 · C2 = C1

by the Ratio Claim. 2

Because C1 is the largest of the three constants, we can simplify the
Invariant to rx ≥ f(x)/C1 for every Delaunay vertex x. From this we
conclude

‖x− y‖ ≥ f(x)

1 + C1

for any two vertices x, y in the Delaunay tetrahedrization, using the argu-
ment in the proof of the Smallest Gap Lemma in Section 8.

Bibliographic notes

The bulk of the material in this section is taken from a paper by Jonathan
Shewchuk (1998). In that paper, the assumed input is a so-called piecewise
linear complex as defined by Miller et al. (1996). This is a 3-face of a
polyhedron together with its faces, which is slightly more general than a
three-dimensional polyhedron.

16. Sliver exudation

The sliver is the only type of small volume tetrahedron whose circumradius
over shortest edge length ratio does not grow with decreasing volume. Ex-
perimental studies indicate that slivers frequently exist right between other
well-shaped tetrahedra inside Delaunay tetrahedrizations. This section ex-
plains how point weights can be used to remove slivers.

Triangulations and meshes in computational geometry 205

Periodic meshes

Suppose S is a finite set of points in R
3 whose Delaunay tetrahedrization

has the ratio property for a constant %0. The goal is to prove that there
are weights we can assign to the points such that the weighted Delaunay
tetrahedrization is free of slivers. This cannot be true in full generality, for
if S consists of only four points forming a sliver then no weight assignment
can make that sliver disappear. We avoid this and similar boundary effects
by replacing the finite by a periodic set S = P + Z

3, where P is a finite set
of points in the half-open unit cube [0, 1)3 and Z

3 is the three-dimensional
integer grid. The periodic set S contains all points p + v, where p ∈ P
and v is an integer vector. Like S, the Delaunay tetrahedrization D of S is
periodic. Specifically, for every tetrahedron τ ∈ D, the shifted copies τ +Z

3

are also in D. This idea is illustrated for a periodic set generated by four
points in the half-open unit square in Figure 58.

Fig. 58. Periodic tiling of the plane.
The shaded triangles form a domain whose

shifted copies tile the entire plane

Weight assignment

A weight assignment is a function ω : P → R. The resulting set of spheres
is denoted as Sω = {(a, ω(p)) : p ∈ P, a ∈ p + Z

3}. Depending on ω, a
point p may or may not be a vertex of the weighted Delaunay triangulation
of Sω, which we denote as Dω. Let N(p) be the minimum distance to any
other point in S. To prevent points from becoming redundant, we limit
ourselves to mild weight assignments that satisfy 0 ≤ ω(p) < 1

3N(p) for all
p ∈ P . Every sphere in Sω has a real radius and every pair is disjoint and
not nested. It follows that none of the points is redundant. Another benefit
of a mild weight assignment is that it does not drastically change the shape
of triangles and tetrahedra. In particular, Dω has the ratio property for a

206 H. Edelsbrunner

constant %1 that only depends on %0. It follows that the area of each triangle
is bounded from below by some constant times the square of its circumcircle.
The same is not true for volumes of tetrahedra, which is why eliminating
slivers is difficult.

A crucial step towards eliminating slivers is a generalization of the De-
gree Lemma of Section 14. Let K be the set of simplices that occur in
weighted Delaunay tetrahedrizations for mild weight assignments of S. In
other words, K =

⋃
ωDω, which is a three-dimensional simplicial complex

but not necessarily geometrically realized in R
3. The vertex set of K is

VertK = S, and the degree of a vertex is the number of edges in K that
share the vertex.

Weighted Degree Lemma. There exists a constant δ1 depending only
on %0 such that the degree of every vertex in K is at most δ1.

The proof is fairly tedious and partially a repeat of the proofs of the
Length Variation and Degree Lemmas of Section 14. It is therefore omitted.

Slicing orthogonal spheres

We need an elementary fact about spheres (a,A2) and (z, Z2) that are or-
thogonal, that is, ‖a− z‖2 = A2 + Z2. A plane intersects the two spheres
in two circles, which may have real or imaginary radii.

Slicing Lemma. A plane passing through a intersects the two spheres in
two orthogonal circles.

Proof. Let (x,X2), (y, Y 2) be the circles where the plane intersects the two
spheres. We have x = a, X2 = A2, and Y 2 = Z2 − ‖z − y‖2. Hence

‖x− y‖2 = ‖x− z‖2 − ‖z − y‖2

= (A2 + Z2)− (Z2 − Y 2)

= X2 + Y 2.

In words, the two circles are also orthogonal. 2

As an application of the Slicing Lemma consider three spheres and the
plane that passes through their centres, as in Figure 59. The plane intersects
the three spheres in three circles, and there is a unique circle orthogonal to
all three. The Slicing Lemma implies that every sphere orthogonal to all
three spheres intersects the plane in this same circle.

Variation of orthoradius

Another crucial step towards eliminating slivers is the stability analysis of
their orthospheres. We will see that a small weight change can increase the
size of the orthosphere dramatically. This is useful because a tetrahedron in

Triangulations and meshes in computational geometry 207

ζ

z

Fig. 59. Slice through three spheres and another
sphere orthogonal to the first three

Dω cannot have a large orthosphere, for else that orthosphere would be closer
than orthogonal to some weighted point. We later exploit this observation
and change weights to increase orthospheres of slivers.

Let us analyse how the radius of the orthosphere of four spheres changes
as we manipulate the weight of one of the sphere. Let (y, Y 2) be the smal-
lest sphere orthogonal to the first three spheres, let (p, P 2) be the fourth
sphere, and let (z, Z2) be the orthosphere of all four spheres, as illustrated
in Figure 60. Let ζ and φ be the distances of z and p from the plane h that
passes through the centres of the first three spheres. With varying P 2, the
centre of the orthosphere moves along the line that meets h orthogonally at
y. The distance of z from h is a function of the weight of p, ζ : R → R.

p

Z

Y

P

y

φζ

λz

Fig. 60. The orthocentre z moves downward
as the weight of p increases

Distance Variation Lemma. ζ(P 2) = ζ(0)− P 2

2φ .

Proof. Let λ be the distance from p to the line along which z moves.
We have Z2 + P 2 = (ζ(P 2) − φ)2 + λ2. The weight of the orthosphere is

208 H. Edelsbrunner

Z2 = ζ(P 2)2 + Y 2. Hence

ζ(P 2)2 = Z2 − Y 2

= (ζ(P 2)− φ)2 + λ2 − P 2 − Y 2.

After cancelling ζ(P 2)2 we get

ζ(P 2) =
φ2 + λ2 − Y 2

2φ
− P 2

2φ
.

The first term on the right-hand side is ζ(0). 2

The term P 2/2φ is the displacement of the orthocentre that occurs as we
change the weight of p from 0 to P 2. For slivers, the value of φ is small
which implies that the displacement is large.

Sliver theorem

We finally show that there is a mild weight assignment that removes all
slivers. The proof is constructive and assigns weights in sequence to the
points in P . To quantify the property of being a sliver, we define ξ = V/L,
where V is the volume and L is the length of the shortest edge of the
tetrahedron. Only slivers can have bounded R/L as well as small ξ. Note
that the volume of the tetrahedron indicated in Figure 60 is one-third the
area of the base triangle times φ. As mentioned above, the area of the base
triangle is some positive constant fraction Y 2. Similarly, L is some positive
constant fraction of Y , which implies that ξ is some positive constant fraction
of Y φ.

Sliver Theorem. There are constants %1, ξ0 > 0 and a mild weight
assignment ω, such that the weighted Delaunay tetrahedrization has the
ratio property for %1 and ξ > ξ0 for all its tetrahedra.

Proof. We focus on proving ξ > ξ0 for all tetrahedra in Dω. Assume
without loss of generality that the distance from a point p to its nearest
neighbour in S is N(p) = 1. The weight assigned to p can be anywhere
in the interval [0, 1

3]. According to the Weighted Degree Lemma, there is
only a constant number of tetrahedra that can possibly be in the star of
p. Each such tetrahedron can exist in Dω only if its orthosphere is not too
big. In other words, the tetrahedron can only exist if ω(p) is chosen inside
some subinterval of [0, 1

3]. The Distance Variation Lemma implies that the
length of this subinterval decreases linearly with φ and therefore linearly
with ξ. We can choose ξ0 small enough such that the constant number of
subintervals cannot possibly cover [0, 1

3]. By the pigeonhole principle, there

is a value ω(p) ∈ [0, 1
3] that excludes all slivers from the star of p. 2

Triangulations and meshes in computational geometry 209

Removing slivers

The proof of the Sliver Theorem suggests an algorithm that assigns weights
to individual points in an arbitrary sequence. For each point p ∈ P , the
algorithm considers the interval of possible weights and the subintervals in
which tetrahedra in K can occur in the weighted Delaunay tetrahedrization.
We could consider all tetrahedra in the star of p in K, but it is more con-
venient to consider only the subset in the 1-parameter family of weighted
Delaunay tetrahedrizations generated by continuously increasing the weight
of p from 0 through 1

3N(p). For each such tetrahedron, we get the ξ value
and a subinterval during which it exists in Dω. Figure 61 draws each tetra-
hedron as a horizontal line segment in the ωξ-plane. The lower envelope of
the line segments is the function that maps the weight of p to the worst ξ
value of any tetrahedron in its star. The algorithm finds the weight where
that function has a maximum and assigns it to p. Since there is only a con-
stant number of tetrahedra to be considered, this can be accomplished in
constant time. The overall running time of the algorithm is therefore O(n),
where n = cardP .

ξ

1/30

)p(ω

Fig. 61. Each tetrahedron in the star
is represented by a horizontal line segment

A source of possible worry is that, after we have fixed the weight of p we
may modify the weight of a neighbour q of p. Modifying the weight of q
may change the star of p. However, all new tetrahedra in the star of p also
belong to the star of q and thus cannot have arbitrarily small ξ values. We
thus do not have to reconsider p, and O(n) time indeed suffices. The Sliver
Theorem guarantees the algorithm is successful as quantified by the positive
constant ξ0. While the algorithm does not find the globally optimum weight
assignment, it finds the optimum for each point individually, assuming fixed
weights of other points. It might therefore achieve a minimum ξ value that
is much better than the rather pessimistic estimate for ξ0 guaranteed by the
Sliver Theorem.

Bibliographic notes

The material of this section is taken from the sliver exudation paper by
Cheng et al. (1999). The occurrence of slivers as a menace in three-dimen-
sional Delaunay tetrahedrizations was reported by Cavendish, Field and

210 H. Edelsbrunner

Frey (1985). Besides the sliver exudation method described in this section,
there are two other methods that provably remove slivers. The first by
Chew (1997) adds points and uses randomness to avoid creating new slivers.
The second by Edelsbrunner et al. (1999) moves points and relies on the
ratio property of the Delaunay tetrahedrization, as in the weight assignment
method of this section.

REFERENCES

F. Aurenhammer (1991), Voronoi diagrams: a study of a fundamental geometric
data structure, ACM Comput. Surveys 23, 345–405.

M. Bern and D. Eppstein (1992), Mesh generation and optimal triangulations, in
Computing in Euclidean Geometry, Vol. 1 (D.-Z. Du and F. K. Hwang, eds),
World Scientific, Singapore, pp. 23–90.

M. Bern, D. Eppstein and J. Gilbert (1994), Provably good mesh generation,
J. Comput. Syst. Sci. 48, 384–409.

L. J. Billera and B. Sturmfels (1992), Fiber polytopes, Ann. Math. 135, 527–549.
J. C. Cavendish, D. A. Field and W. H. Frey (1985), An approach to automatic

three-dimensional finite element mesh generation, Internat. J. Numer. Meth-
ods Engrg 21, 329–347.

B. Chazelle (1984), Convex partitions of polyhedra: a lower bound and worst case
algorithm, SIAM J. Comput. 13, 488–507.

S.-W. Cheng, T. K. Dey, H. Edelsbrunner, M. A. Facello and S.-H. Teng (1999),
Sliver exudation, in Proc. 15th Ann. Sympos. Comput. Geom., 1999, ACM,
pp. 1–14.

L. P. Chew (1987), Constrained Delaunay triangulations, in Proc. 3rd Ann. Sympos.
Comput. Geom., 1987, ACM, pp. 215–222.

L. P. Chew (1989), Guaranteed-quality triangular meshes, Report TR-98-983, Com-
put. Sci. Dept., Cornell University, Ithaca, NY.

L. P. Chew (1993), Guaranteed-quality mesh generation for curved surfaces, in
Proc. 9th Ann. Sympos. Comput. Geom., 1993, ACM, pp. 274–280.

L. P. Chew (1997), Guaranteed-quality Delaunay meshing in 3D, in Proc. 13th Ann.
Sympos. Comput. Geom., 1997, ACM, pp. 391–393.

K. L. Clarkson and P. W. Shor (1989), Applications of random sampling in com-
putational geometry, Discrete Comput. Geom. 4, 387–421.

G. B. Danzig (1963), Linear Programming and Extensions, Princeton University
Press, Princeton, NJ.

M. de Berg, M. van Kreveld, M. Overmars and O. Schwarzkopf (1997), Computa-
tional Geometry: Algorithms and Applications, Springer, Berlin.

B. Delaunay (1934), Sur la sphère vide, Izv. Akad. Nauk SSSR, Otdelenie Matem-
aticheskii i Estestvennyka Nauk 7, 793–800.

P. G. L. Dirichlet (1850), Über die Reduktion der positiven quadratischen Formen
mit drei unbestimmten ganzen Zahlen, J. Reine Angew. Math. 40, 209–227.

H. Edelsbrunner (1987), Algorithms in Combinatorial Geometry, Springer, Heidel-
berg.

H. Edelsbrunner (1990), An acyclicity theorem for cell complexes in d dimensions,
Combinatorica 10, 251–260.

Triangulations and meshes in computational geometry 211

H. Edelsbrunner (1995), Algebraic decomposition of non-convex polyhedra, in Proc.
36th Ann. IEEE Sympos. Found. Comput. Sci. 1995, pp. 248–257.

H. Edelsbrunner, X.-Y. Li, G. L. Miller, A. Stathopoulos, D. Talmor, S.-H. Teng,
A. Üngör and N. Walkington (1999), Smoothing cleans up slivers, Manuscript.

H. Edelsbrunner and E. P. Mücke (1990), Simulation of simplicity: a technique to
cope with degenerate cases in geometric algorithms, ACM Trans. Graphics 9,
66–104.

H. Edelsbrunner and N. R. Shah (1996), Incremental topological flipping works for
regular triangulations, Algorithmica 15, 223–241.

H. Edelsbrunner, T. S. Tan and R. Waupotitsch (1992), An O(n2 log n) time al-
gorithm for the minmax angle triangulation, SIAM J. Sci. Stat. Comput. 13,
994–1008.

I. Emiris and J. Canny (1995), A general approach to removing geometric degen-
eracies, SIAM J. Comput. 24, 650–664.

P. Erdős (1979), Combinatorial problems in geometry and number theory, Proc.
Sympos. Pure Math. 34, 149–162.

S. Fortune and C. J. Van Wyk (1996), Static analysis yields efficient exact integer
arithmetic for computational geometry, ACM Trans. Graphics 15, 223–248.

I. M. Gelfand, M. M. Kapranov and A. V. Zelevinsky (1994), Discriminants, Res-
ultants and Multidimensional Determinants, Birkhäuser, Boston.

J. E. Goodman and J. O’Rourke, eds (1997) Handbook of Discrete and Computa-
tional Geometry, CRC Press, Boca Raton, FL.

P. M. Gruber and C. G. Lekkerkerker (1987), Geometry of Numbers, 2nd edn,
North-Holland, Amsterdam.

B. Grünbaum (1967), Convex Polytopes, Wiley, London.
B. Grünbaum and G. C. Shephard (1994), A new look at Euler’s theorem for

polyhedra, Amer. Math. Monthly 101, 109–128.
L. J. Guibas, D. E. Knuth and M. Sharir (1992), Randomized incremental con-

struction of Delaunay and Voronoi diagrams, Algorithmica 7, 381–413.
H. Hadwiger (1957), Vorlesungen über Inhalt, Oberfläche und Isoperimetrie,

Springer, Berlin.
E. Helly (1923), Über Mengen konvexer Körper mit gemeinschaftlichen Punkten,

Jahresber. Deutsch. Math.-Verein. 32, 175–176.
E. Helly (1930), Über Systeme von abgeschlossenen Mengen mit gemeinschaftlichen

Punkten, Monatsh. Math. Physik 37, 281–302.
B. Joe (1989), Three-dimensional triangulations from local transformations, SIAM

J. Sci. Statist. Comput. 10, 718–741.
B. Joe (1991), Construction of three-dimensional Delaunay triangulations from

local transformations, Comput. Aided Geom. Design 8, 123–142.
R. Klein (1997), Algorithmische Geometrie, Addison-Wesley, Bonn.
C. L. Lawson (1977), Software for C1 surface interpolation, in Mathematical Soft-

ware III, Academic Press, New York, pp. 161–194.
C. L. Lawson (1986), Properties of n-dimensional triangulations, Computer Aided

Geometric Design 3, 231–246.
D. T. Lee and A. K. Lin (1986), Generalized Delaunay triangulations for planar

graphs, Discrete Comput. Geom. 1, 201–217.

212 H. Edelsbrunner

N. J. Lennes (1911), Theorems on the simple finite polygon and polyhedron, Amer.
J. Math. 33, 37–62.

N. Max, P. Hanrahan and R. Crawfis (1990), Area and volume coherence for effi-
cient visualization of 3D scalar functions, in San Diego Workshop on Volume
Visualization, published in Computer Graphics 24, 27–33.

D. Michelucci (1995), An ε-arithmetic for removing degeneracies, in Proc. IEEE
Sympos. Comput. Arithmetic, 1995.

G. L. Miller, D. Talmor, S.-H. Teng and N. Walkington (1995), A Delaunay based
numerical method for three dimensions: generation, formulation, and parti-
tion, in Proc. 27th Ann. ACM Sympos. Theory Comput., 1995, pp. 683–692.

G. L. Miller, D. Talmor, S.-H. Teng, N. Walkington and H. Wang (1996), Control
volume meshes using sphere packing: generation, refinement and coarsening,
in Proc. 5th Internat. Meshing Roundtable, 1996, pp. 47–61.

K. Mulmuley (1994), Computational Geometry: An Introduction Through Random-
ized Algorithms, Prentice-Hall, Englewood Cliffs, NJ.

J. Nievergelt and F. P. Preparata (1982), Plane-sweep algorithms for intersecting
geometric figures, Comm. ACM 25, 739–747.

A. Okabe, B. Boots and K. Sugihara (1992), Spatial Tessellations: Concepts and
Applications of Voronoi Diagrams, Wiley, Chichester.

J. O’Rourke (1987), Art Gallery Theorems and Algorithms, Oxford University
Press, New York.

J. O’Rourke (1994), Computational Geometry in C, Cambridge University Press,
Cambridge.

J. Pach and P. K. Agarwal (1995), Combinatorial Geometry, Wiley-Interscience,
New York.

F. P. Preparata and M. I. Shamos (1985), Computational Geometry: An Introduc-
tion, Springer, New York.

J. Radon (1921), Mengen konvexer Körper, die einen gemeinschaftlichen Punkt
enthalten, Math. Ann. 83, 113–115.

J. Ruppert (1992), A new and simple algorithm for quality 2-dimensional mesh
generation, Report UCB/CSD 92/694, Comput. Sci. Div., University of Cali-
fornia, Berkeley, CA.

J. Ruppert (1995), A Delaunay refinement algorithm for quality 2-dimensional mesh
generation, J. Algorithms 18, 548–585.

J. Ruppert and R. Seidel (1992), On the difficulty of triangulating three-dimensional
non-convex polyhedra, Discrete Comput. Geom. 7, 227–254.

E. Schönhardt (1928), Über die Zerlegung von Dreieckspolyedern in Tetraeder,
Math. Ann. 98, 309–312.

L. L. Schumaker (1987), Triangulation methods, in Topics in Multivariate Approx-
imation, (C. K. Choi, L. L. Schumaker and F. I. Utreras, eds), Academic
Press, pp. 219–232.

R. Seidel (1988), Constrained Delaunay triangulations and Voronoi diagrams with
obstacles, in 1978–1988 Ten Years IIG, pp. 178–191.

R. Seidel (1993), Backwards analysis of randomized geometric algorithms, in New
Trends in Discrete and Computational Geometry, (J. Pach, ed.), Springer,
Berlin, pp. 37–67.

Triangulations and meshes in computational geometry 213

R. Seidel (1998), The nature and meaning of perturbations in geometric computing,
Discrete Comput. Geom. 19, 1–18.

M. I. Shamos (1975), Geometric complexity, in Proc. 7th Ann. ACM Sympos. The-
ory Comput., 1975, pp. 224–233.

M. I. Shamos and D. Hoey (1975), Closest-point problems, in Proc. 16th Ann. IEEE
Sympos. Found. Comput. Sci., 1975, pp. 151–162.

M. I. Shamos and D. Hoey (1976), Geometric intersection problems, in Proc. 17th
Ann. IEEE Sympos. Found. Comput. Sci., 1976, pp. 208–215.

J. R. Shewchuk (1998), Tetrahedral mesh generation by Delaunay refinement, in
Proc. 14th Ann. Sympos. Comput. Geom., 1998, ACM, pp. 86–95.

R. Sibson (1978), Locally equiangular triangulations, Comput. J. 21, 243–245.
D. Talmor (1997), Well-spaced points for numerical methods, Report CMU-CS-97-

164, Dept. Comput. Sci., Carnegie-Mellon University, Pittsburgh, PA.
G. Voronoi (1907/08), Nouvelles applications des paramètres continus à la théorie

des formes quadratiques, J. Reine Angew. Math. 133 (1907), 97–178, and 134
(1908), 198–287.

P. L. Williams (1992), Visibility ordering meshed polyhedra, ACM Trans. Graphics
11, 103–126.

C. K. Yap (1990), Symbolic treatment of geometric degeneracies, J. Symbolic Com-
put. 10, 349–370.

G. M. Ziegler (1995), Lectures on Polytopes, Springer, New York.

